155 research outputs found

    Flamelet models for premixed turbulent combustion

    No full text

    On the correlation of inverted flame blow-off limits with the boundary velocity gradient at the flame holder surface

    Get PDF
    Conductive heat losses from the base of a lean methane–air inverted flame stabilized behind the trailing edge of a thin rod have been experimentally evaluated. The results favor the view that the heat losses to the flame holder play a crucial role in the inverted flame stabilization and blow-off. Simple estimations have been performed, which indicate that the well-established correlation between the mixture composition and the boundary velocity gradient at the flame holder, usually considered as a proof of the flame stretch theory of blow-off, can be explained without involving the flame stretch concept. The suggested explanation of this correlation is based on the assumption that the heat loss to the flame holder is the main factor that determines the inverted flame blow-off behavior and on the similarity between the mechanisms of energy and momentum diffusion in gases (Pr≈ 1)

    Experimental study of lean flammability limits of methane/hydrogen/air mixtures in tubes of different diameters

    No full text
    Lean limit flames in methane/hydrogen/air mixtures propagating in tubes of internal diameters (ID) of 6.0, 8.9, 12.3, 18.4, 25.2, 35.0, and 50.2 mm have been experimentally studied. The flames propagated upward from the open bottom end of the tube to the closed upper end. The content of hydrogen in the fuel gas has been varied in the range 0–40 mol%. Lean flammability limits have been determined; flame shapes recorded and the visible speed of flame propagation measured. Most of the observed limit flames in tubes with diameters in the range of 8.9–18.4 mm had enclosed shape, and could be characterized as distorted or spherical flame balls. The tendency was observed for mixtures with higher hydrogen content to form smaller size, more uniform flame balls in a wider range of tube diameters. At hydrogen content of 20% or more in the fuel gas, limit flames in largest diameters (35.0 mm and 50.2 mm ID) tubes had small, compared to the tube diameter, size and were lens -shaped. Regular open-front lean limit flames were observed only for the smallest diameters (6.0 mm and 8.9 mm) and largest diameters (35.0 and 50.2 mm ID), and only for methane/air and (90% CH4 + 10% H2)/air mixtures, except for 6 mm ID tube in which all limit flames had open front. In all experiments, except for the lean limit flames in methane/air and (90% CH4 + 10% H2)/air mixtures in the 8.9 mm ID tube, and all limit flames in 6.0 mm ID tube, visible flame speeds very weakly depended on the hydrogen content in the fuel gas and were close to- or below the theoretical estimate of the speed of a rising hot bubble. This observation suggests that the buoyancy is the major factor which determines the visible flame speed for studied limit flames, except that last mentioned. A decrease of the lean flammability limit value with decreasing the tube diameter was observed for methane/air and (90% CH4 + 10% H2)/air mixtures for tubes having internal diameters in the range of 18.4–50.2 mm. This effect has been attributed to the stronger combined effect of the preferential diffusion and flame stretch in narrower tubes for flames which resemble rising bubble

    Modeling of burner-stabilized hydrogen/air flames using mathematically reduced reaction schemes

    Get PDF
    A mathematical technique is used to reduce several hydrogen/air reaction systems to one-and two-step schemes. The reduction technique is based on the use of intrinsic low-dimensional manifolds in composition space as introduced by Maas and Pope (1992). In this method it is assumed that the fastest reaction groups of the chemical source term are in steady-state For a reaction mechanism that does not include HO2, a one-step reduced scheme is used for burner-stabilized hydrogen/air flame calculations. It appears that the one-step reduced scheme predicts the flame structure quite well for several values of the equivalence ratio and mass flow rates. The differences in flame temperature between the reduced scheme and full scheme calculations are less than 50K A one-step reduced scheme is also used for the reaction scheme including HO2. For this scheme, however, only low mass flow rates can be used, otherwise the flame will blow off. This is caused by the fact that the one-step scheme underestimates the adiabatic burning velocity considerably (Eggels, 1995). However, the one-step reduced scheme still predicts the main species quite well. For larger mass flow rates, close to the adiabatic mass burning rate, a two-step reduced scheme is used instead. The two-step scheme gives a significant improvement of the H2/air flame structure, as expected

    Numerical flow modelling in a locally refined grid

    Get PDF
    An algorithm is presented to model two-dimensional, non-isothermal, low Mach number flows with a local steep density gradient. The algorithm uses an adaptive, locally refined, non-staggered grid and has been developed, especially for modelling laminar flames. The governing equations, based on a stream-function-vorticity formulation, are presented and discretized using hybrid finite differences. A (isothermal) test problem is presented to compare the accuracy of the results of the solver presented in this paper, with the results of algorithms found in the literature. However, this test problem proves to be not well suited for the application of a locally refined grid, since it does not contain a local steep gradient. For this reason an additional test problem is constructed that clearly shows the advantages of the locally refined grid as compared to a uniform grid with respect to both the calculation time as well as the number of grid nodes needed. Furthermore, a laminar premixed flame is modelled with simple chemistry to show that the algorithm, presented in this paper, converges to a stabilized flame when an adaptive grid technique is used

    A review of cavity-based trapped vortex, ultra-compact, high-g, inter-turbine combustors

    No full text
    \u3cp\u3eTrapped vortex combustor (TVC) is different from conventional swirl-stabilized combustors. It takes advantages of a cavity to stabilize the flame. When the cavity size of a TVC is well designed, a large rotating vortex can be formed in the cavity. The vortex cannot shed out the cavity and is thus named a “locked” or “stable” vortex. One of the main challenges for TVC design is fuel injection. Typically, fuel can be injected directly into the cavity or from the diffuser upstream. Injecting from the diffuser leads to the fuel being mixed with the air before it enters the combustor. When the fuel is injected directly into the cavity, it is desirable to supply the fuel in such way that the locked vortex in the cavity is reinforced. Furthermore, the fuel-air mixing in the cavity will be promoted, as the bypass air is directly added into the cavity. Since the recirculation zone anchored in the cavity is not exposed to the main incoming flow, stable combustion is achieved, even in the presence of a high speed main flow as typically expected in Ramjets and Scramjets. A well-designed trapped vortex combustor (TVC) enables a better fuel-air mixing, a better stabilized flame, lower emission, ultra-compact and high efficient combustion to be achievable. As a promising combustion concept, intensive scientific research has been conducted on TVC in the application areas of aerospace propulsion, power generation and waste incineration. In this work, we will firstly introduce the fundamental concepts, the development and evolution history of TVCs. The combustion, aerodynamics, and aeroacoustics features of trapped vortex combustion are then described. This includes reviewing and discussing the cavity flow/aerodynamics, fuel-air injection and mixing, trapped vortex combustion, emission and combustion of alternative fuels, and aeroacoustics characteristics. The 'spin-off’ application of trapped vortex combustion concept for the design of ultra-compact and high-g combustors, inter-turbine burners, in-Situ and flameless TVC reheat combustors are then reviewed and discussed. Various practical applications of trapped vortex combustion concept in gas turbines, ramjets, scramjets and waste incinerators are discussed and summarized. Finally, the challenges and future directions of the design and implementation of TVCs are provided.\u3c/p\u3
    corecore