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NUMERICAL FLOW MODELLING IN A LOCALLY 
REFINED GRID 

H. C. DE LANGE and L. P. H. DE GOEY 

Faculty of Mechanical Engineerhg. WH.3- 138, Eindhouen University of Technology, 
P.O. Box 5I3,5600 M B  Eindhown, 77w Netherlcrnds 

SUMMARY 
An algorithm is presented to model two-dimensional, non-isothermal, low Mach number flows with a local 
steep density gradient. The algorithm uses an adaptive, locally refined, non-staggered grid and has been 
developed, especially for modelling laminar flames. The governing equations, based on a stream-func- 
tion-vorticity formulation, are presented and discretized using hybrid finite differences. A (isothermal) tcst 
problem is presented to compare the accuracy of the results of the solver presented in this paper, with the 
results of algorithms found in the literature. However, this test problem proves to be not well suited for the 
application of a locally refined grid, since it does not contain a local steep gradient. For this reason an 
additional test problem is constructed that clearly shows the advantages of the locally refined grid as 
compared to a uniform grid with respect to both the calculation time as well as the number of grid nodes 
needed. Furthermore, a laminar premixed flame is modelled with simple chemistry to show that the 
algorithm, presented in this paper, converges to a stabilized flame when an adaptive grid technique is used. 

1. INTRODUCTION 

In recent years, the construction of burners for industrial and domestic use has drawn increasing 
attention. Where simple design rules used to be sufficient, the energy scarcity and the growing 
awareness of environmental hazards make more sophisticated design tools indispensable. One of 
these new tools could be a computer model of the combustion process, which makes it possible to 
predict the consequences of changes in the burner and to find the conditions which ensure an 
optimal efficiency at low exhaust of pollutants. However, the physical and chemical features of 
flames are extremely difficult to describe, although there have been great achievements in 
combustion science in the last decades. In engineering, it is still almost impossible to construct 
burners supported by computer modelling. This is caused by the difficulty of separating the effects 
of the geometry of the burner from both the physical and chemical properties of the flame. Flames 
in domestic and industrial burners are, therefore, still very difficult to model and their character- 
istics are, for the time being, only moderately understood. 

An important problem, which is inevitably encountered in the numerical modelling of two- or 
three-dimensional combustion processes, is brought about by the large difference between the 
scale of the burner (usual dimensions of the order of 0.1 m) and the flame thickness (of the order of 
0.1 mm). In a non-refined (uniform) grid, an accurate solution would need a huge number of grid 
points. Solving the combustion equations on such a grid is only possible at the cost of an 
enormous number of calculations. Therefore, one would need an extremely fast computer with 
immense storage. This problem can be solved by the use of a locally refined grid, which calls for 
the development of a special solver. 
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The grid-refinement technique,' chosen in this paper, adds grid points to a coarse grid in areas 
where a given property has steep gradients. A non-staggered grid is used, although this type of 
grid is notorious for checkerboard oscillations in the flow field.' This problem is circumvented by 
solving the flow field using a stream-function-vorticity formulation. 

The numerical algorithm, presented in this paper and shown schematically in Figure 1, has 
been developed, especially for the modelling of two-dimensional laminar flames in a Cartesian 
co-ordinate system. The governing conservation equations are solved iteratively, starting from 
some initial solution, and the program stops as soon as a stationary solution is found. Each 
iteration starts with the calculation of the density, the physical parameters (e.g. the thermal 
conductivity and viscosity) and the reaction rate. Next, the flow field is updated to ensure that the 
solution satisfies the continuity equation at each iteration. This is done by first recalculating the 
stream function. The new solution of the stream function leads to new velocity components. 
Finally, the scalar variables (temperature, mass fractions and vorticity) are solved. The locally 
refined grid is adapted when needed. 

The equations describing the combustion process are presented in Section 2. In Section 3.1, the 
discretization of the conservation equations for vorticity, energy and mass fractions is presented. 
The discretization of the stream function and flow-field equations is described in Section 3.2. The 
method used to calculate the flow field at the boundaries of the calculation domain and at the 
boundaries of different refinement levels is presented in Sections 4 and 5, respectively. There are 
numerous methods to solve the resulting set of linearized equations. In Section 6, some of these 
methods are briefly presented and compared. In Section 7.1, a test problem is presented to show 
the accuracy of the proposed algorithm. An additional example, presented in Section 7.2, clearly 
shows the advantages of a locally refined grid. At the end of this paper (Section 8), a flame is 
modelled using a one-step chemical model. This last example shows that the algorithm is able to 
find a converged result, using adaptive gridding. Furthermore, the calculation time needed to 
obtain this solution is about 1 h on a workstation, which shows that modelling of flames is indeed 
feasible for engineering purposes. 

2. FLOW-FIELD CALCULATION 

The equations, which govern a stationary deflagration process, are the conservation equations of 
mass, momentum, energy and species mass fractions, together with the equation of state of the 

The energy and species mass fraction equations are of the same form: 

Figure 1. Block structure of the program 
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where p is the mixture density, v is the velocity (u, o),fis either the enthalpy or the mass fraction 
( Yi = pi /p;  i = 1,. . , N) of one of the N species, and r, is introduced as the thermal conductivity or 
the mass diffusion coefficient. The right-hand side (S,) of equation (1) represents the chemical 
source term, which will be introduced in Section 8 for the case of a one-step chemical reaction. 

Summing equation (1) over all species leads to the well-known continuity equation 

V*@V) = 0 (3 
since the diffusion fluxes and chemical source terms add to zero by definition. 

The momentum-balance equation of the mixture is written as 

~ V - V V  + V.M = - VP, (3) 
which has the familiar form of a single-fluid momentum equation. In equation (3), P = xi, Pi is 
the sum of the partial pressures and M indicates the viscous stress t e n ~ o r . ~  

In two-dimensional (2-D) combustion modelling, equations (1-3) are (N + 3kindependent 
coupled conservation equations, while we have N + 4 independent variables: Yi (1 6 i 6 N - l), 
P ,  v, p and T. This set of equations is of common use in combustion research.6-9 The equation of 
state completes the set of equations. We use the ideal gas law: 

P = p R T  (4) 

where R is the specific gas constant of the mixture. In fuel/air combustion, the abundant quantity 
of nitrogen makes it possible to assume that R is independent of the mixture composition. It may 
be concluded from equation (3) that all pressure variations in the flame are much smaller than the 
atmospheric pressure Pa,, in low Mach number deflagration processes. Therefore, equation (4) 
implies that the density may be regarded as a function of the temperature only: p = P,,,/(RT). 
The effect of pressure variations is eliminated from the 2-D flow equations by the introduction of 
a stream function and a vorticity,' although a stream-function-vorticity formulation is rarely 
used in problems with a nonconstant density. The vorticity is defined as 

O E V X V  ( 5 )  

In 2-D systems, only the z-component of o) is needed, which will be denoted as w from here on. 
Within the (Cartesian) calculation domain, w has to satisfy the vorticity equation, which is found 
from the momentum equations: 

with ( = (u2 + u2)/2. Substituting the definition of M gives 

V x ( V * M ) =  

(7) 

where p is the dynamic viscosity. Note that equations (6) and (7) can be rewritten as a convection- 
diffusion equation like equation (l), when the right-hand sides of both equations (except for the 
- V (pV w) term) are combined into a source term. This will be used in Section 3.1. The stream 
function (q) is defined in such a manner that it describes a 2-D flow field, which always satisfies 
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the continuity equation (equation (2)) 

ap/ay = pu 

- ap/ax = P O  

According to equation (5),  the stream function is coupled to the vorticity by 

(9) 

Instead of having to calculate u, u and P from a combination of the momentum equations (3) and 
the continuity equation (2), we now have to solve equations (6H9) for u, u, p and o. This will be 
done by first updating the stream function Q, from an estimate of the vorticity using equation (9). 
Subsequently, the velocity components are calculated from the newly found stream function 
according to equation (8). Finally, a new vorticity solution is calculated according to equations (6) 
and (7). This iterative procedure is repeated until a stationary solution is reached. 

3. DISCRETIZATION 

Here several methods are presented for discretizing the combustion equations. In Section 3.1 the 
discretization of the scalar convection-diffusion equations for T, Yi and o is described. The 
convection4iffusion equations, which describe the scalar fields not only of Tand Yi (equation (1)) 
but also of o (equations (6) and (7)), will be discretized using fairly standard finite difference 
methods.* In Section 3.2 the discretization of the flow-field equations for u, u and Q, is discussed. 
These equations are discretized in two ways: one of these is of low order and fairly standard in 
modelling of incompressible flow systems and the other is of higher order and new. 

3.1. The scalar equations 

Stability problems occur at large local Peclet numbers (defined in equations (10aH10d) when 
convection4iffusion equations are discretized using the central-difference scheme. Hybird, 
power-law or upwind discretization2 is, therefore, used for these equations. Note that it is possible 
to find stable solutions using central difference scheme, even for large Peclet numbers, as long as 
the relaxation parameters are chosen according to the CFL criterion." However, the thus found, 
stable solution may contain non-physical oscillations. This is caused by the fact that a Taylor- 
series interpolation, as used in the central-difference scheme, is not sufficient for large Peclet 
numbers. 

Discretization of the scalar equations around point P using the points N, E, S, W, n, e, s and w, 
as defined in Figure 2, results in 

(10) 

JIN = r n / ( A Y n A Y )  y(Pen), Pen = ( P u ) n A Y n / r n  (W 
*s = r , / ( A Y S A Y )  'y( - PeSh Pes = ( P u ) , A Y * / r ,  (lob) 

$E = re/(Axeh) y(Pee), Pee = (Pu)eA.&/r, (W 
$w = rw/ (AxwAx)  'y( - Pew), P e w  = ( P U ) w ~ , / l - - w  (1W 

$P = $N + $S + $E + $W (W 

$PfP = $ N f N  + $ S f s  + $EfE + $WfW + SP 
where 
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s 
Figure. 2 The  control volume 

and 

AX = X, - X, 
AY = Yn - Ys. 

The length scales Ax,, Ax,, Ay,, and Ays are defined in Figure 2. In this equation, Sp is the source 
term at point P, which accounts for the effect of the chemical reaction. The source term (S,) in the 
vorticity equation (formed by the right-hand side terms of equations (6) and (7) as explained) will 
be calculated using central differences. The parameter values in the Peclet numbers (pu, po and r) 
at the intermediate points (n, s, e, w) are calculated using harmonic interpolation.2 

The function Y in equation (10) depends on the type of discretization. It is given by either 

(10f) 

( 1 Og) 

Y ( P e )  = max(0, 1.0 - 0.5 IPel) + max(0, - Pe) for the hybrid scheme (1 la) 

(llb) \Y(Pe) = max(0, (1-0 - 01 IPe1)') + max(0, - Pe) for the power-law scheme 

or 

"(Pe) = 1.0 + max(0, - Pe) for the upwind scheme (1 1 4  
Other discretization schemes (e.g. central differences) are easily implemented by changing the 
expression for Y. 

The results, obtained when using the hybrid and power-law schemes are more accurate 
compared to those calculated using the upwind scheme; the upwind scheme as used by Smooke 
et a/.,' leads to artificial diffusive fluxes at all local Peclet numbers.''*'2 An acccurate approxima- 
tion of the diffusive fluxes is essential in combustion modelling, especially near to the reaction 
zone. The power-law and hybrid scheme take care of this, as long as the grid near the reaction 
zone is so fine that the local Peclet numbers remain smaller than 2. Cross-wind diffusion may also 
cause a deviation, which may be omitted by the use of skewed schemes."." These skewed 
schemes lead to quite extensive calculations and have not been used. 

The power-law scheme2 uses an interpolation function close to the analytical one-dimensional 
solution of the convection-diffusion problem without source terms and with constant coefficients 
(p, p u  and r). Therefore, it yields an accurate solution in simple (sourceless) one-dimensional 
problems. The power-law scheme may be improved in multidimensional problems, by using the 
same interpolation function with a correction for 2-D fluxes. However, this corrected scheme 
leads to a substantial increase in the number of calculations and has, therefore, not been used. 
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3.2. The pow field 

The flow field will be calculated from the stream function according to equation (8). The stream 
function is calculated from equation (S), which is a combination of the definition of the vorticity 
(equation (5) )  and the stream function (equation (8)). Therefore, the discretization of equation (9) 
should be in accordance with the discretization of equation (8). This means that equation (8) will 
be discretized first to find the velocity components from a known stream-function solution. Next, 
these discretized equations are used in a discretized form of the vorticity definition (equation (5)) 
to find an equation from which a new stream function may be calculated (note that this is not the 
sequence in which the equations will be used in the program). The discretization is presented for 
the case of an equidistant grid; the equations for non-equidistant grids m a y  be derived analog- 
ously. 

Central-difference discretization of equation (8) may be used to solve up and up: 

P P U P  = ( 9 N  - v>S)/2AY (1W 
and 

PPUP = - ( 9 E  - P w ) / Z A X  

However, the second-order discretization error made by using equation (12) is proportional to the 
third spatial derivative of cp- These third derivatives are equal to the second spatial derivatives of 
pu and p u  by definition. Therefore, fourth-order equations to calculate up and up are easily 
derived: 

(1  3 4  P N  UN + 4pPuP + PSUS = 6 ( 9 N  - P S ) / Z A Y  

which are the integrated forms of equation (8), using Simpson's integration method. 

of equation (5): 
As mentioned, the stream function will be calculated using the centraldifference discretization 

(4 - W A Y  - (0, - v w ) / A x  = wp (14) 
The use of equation (12) or equation (1 3) for u and u at the intermediate points gives the equation 
from which Q, must be calculated. Using (12) gives 

This result may also be found by straightforward secondsrder centraldifference discretization of 
equation (9). However, the use of equation (13) in equation (14) gives a less trivial and more 
accurate equation 

P w  

In both cases, the density at the intermediate points is calculated as the harmonic average of the 
surrounding values. As far as we know, the higher-order approximations given by equations (1 3) 
and (16) are new. 
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4. BOUNDARY CONDITIONS FOR p AND w 

The boundary conditions of flow problems are usually formulated in terms of the velocity 
components. The stream-function-vorticity formulation calls for additional boundary conditions 
for w and p. Since the solutions of both variables are described by a second-order differential 
equation (equations (6) and (9)), they both have to be determined by means of boundary 
conditions on all boundaries. The values of 9 and o on the boundaries have to be determined 
from the flow field. The solutions following from these boundary conditions and the differential 
equations for p and w describe the flow field within the calculation domain. It is ~e l l -known '~  
that these bcundary conditions may be the cause of instability of the numerical algorithm. 
Therefore, some attention is drawn to this subject. We will distinguish three types of boundaries: 
walls, outflow boundaries and symmetry walls, which will be treated subsequently. 

On walls, u, u and T are known and p is found from the equation of state p = P,,,/RT. The 
stream function (p) may then be calculated by analytical or numerical integration of either pu for 
walls along the y-axis or pu for walls along the x-axis according to equation (8). In the problems 
presented in this paper, 9 is evaluated analytically. The vorticity (o) at the point P on the wall is 
calculated by a second-order approximation of its definition (equation (5)) in the fictitious point 
P", half-way between the point P on the wall and the first interior point P next to the wall'' (see 
Figure 3). In case of an equidistant grid (analogous equations are derived easily for non- 
equidistant grids), we use 

UP = - WP, + ( u A  - UB)/CYA - YB) + (UC - UD)/(YC - YD) - ~ ( Y P  - ~P*) / (xP - xp.1 (174 
or 

UP = - OP* +  UP - UP*)/(JJP - YP*) - (UA - ~B)/(xA - XB) - (uc - v~)/(xc - XD) (17b) 

for xA - xB or y, - yB equal to zero, respectively. The points A, B, C and D are defined as in 
Figure 3. Note that equation (17) implies that the values of w at the wall vary as the flow field 
changes. The use of this boundary condition did not give rise to instability problems, in all cases 
tested. 

Many flow problems (such as the second test problem in Section 7 and the flame modelled in 
Section 8) have an outflow boundary at which the flow field (and thus also the stream function) is 
not known beforehand. An outflow boundary parallel to the y-axis is treated here as an example. 
The mass-flow component perpendicular to the boundary (pu) is calculated according to equa- 
tion (1 3a), which assures mass conservation. The other (parallel) mass-flow component (pu),  as 
well as the temperature and mass fractions are calculated by assuming that their derivatives 
perpendicular to the boundary (e.g. d@u)/ax) are equal to zero to first order ((pub = @uk.); u and 
u are determined subsequently, after evaluation of the density, again by using the equation of state 
and the temperature. It then becomes possible to calculate the vorticity (0) with the help of 
equation (1 7). However, it is, of course, not possible to calculate the stream function by means of 
numerical integration of pu, since pu has been determined from 9. Instead, the stream function 
will be calculated by assuming that the first-order approximation to the second-order derivative 
(dzrp/,lax2) is equal to zero. This approximation, known as Roache's condition," is consistent with 
the assumption that the derivative of the parallel component pu  of the mass-flux vector is equal to 
zero: d@u)/ax = a2p/dx2 = 0. This condition provides very accurate results in incompressible 
flow computations, provided that the downstream boundary is positioned sufficiently far away 
from regions, where gradients in u, u and 9 are small. The first-order approximation to both 
?(pu)/ax = 0 and dZ9/3x2 = 0 is responsible for an inconsistency in the solution at this boundary 
in terms of the truncation error. This error will be insignificant if the outflow boundary is 
positioned far away from regions of physical activity. 
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Figure 3. Definition of the boundary points used in equation (17), P is a fictitious point halfway between the boundary 
point P and the interior point Iy 

The velocity component, perpendicular to a symmetry boundary, must be equal to zero. We 
treat a symmetry boundary along the x-axis as an example here, meaning that u equals zero. 
Therefore, integration of this velocity component gives a constant stream function along this 
boundary. Furthermore, the derivative perpendicular to the symmetry line of the velocity 
component parallel to the wall is equal to zero (au/dy = 0 in our example). This means that both 
du/dy and du/dx are equal to zero and, therefore, the vorticity on a symmetry bound must be 
equal to zero. The parallel velocity component (u)  is calculated using equation (13) by introducing 
a fictitious mirror point outside of the computational domain and (in our example) setting 
(pub - (pub and qN + cps - 2qp equal to zero (note that either N or S is P).  

5. ADAPTIVE GRID 

We use a grid refinement technique in which, starting from a coarse grid, additional points' are 
introduced in regions where steep gradients occur, half-way between grid points of the coarser 
grid level (see Figure 4). This introduction of additional points is performed in such a manner that 
it is possible to use the discretized equations, presented in Section 3.1, within the refined grid (the 
points marked with x: interior points). Furthermore, there is always at most one intermediate 
point (marked with 0) between two interior points or between an interior point and a wall point. 
An interpolation strategy is developed for these intermediate points, which preserves the accuracy 
of the solution. This interpolation procedure passes the solution of the coarse grid on to the 
refined grid. To pass the solution on in the other direction (from refined to coarse), no additional 
action is needed. It proceeds automatically at the grid nodes of the coarse grid, which have 
become part of the refined grid. 

The refinement procedure is started by introducing additional grid points to the initial coarse 
grid. When the refined grid at this level satisfies the refinement criterion (which will be discussed 
later) everywhere, the same procedure is repeated on the first level of refinement. This opens the 
second refinement level, and so on. This procedure is repeated until the given number of 
refinement levels is filled. In a test problem, presented in Section 7.2, it is shown how the accuracy 
of the solution varies as a function of the number of refinement levels. 

The next time the refinement procedure is activated, the flow field and the scalar fields have 
probably changed. Before the refinement procedure is started the grid has to be cleared of those 
points, which have become dispensable, 1.e. points that lie in regions where the gradient has 
become small. However, the points of the coarsest grid always remain present. 

The choice of the refinement criterion is still open. The best choice would be one that gives 
a smooth distribution of the discretization error of all equations. This would plead for a refine- 



NUMERICAL FLOW MODELLING 505 

ment criterion based on third- and higher-order derivatives of all variables. Grid refinements 
should, therefore, be chosen in such a way that they measure the derivatives of all variables 
(global grid refinement) or of each variable separately (which leads to the use of different grids for 
different variables). Fortunately, the regions where steepest gradients occur do (almost) coincide 
for all variables in combustion problems; moreover, these regions more or less coincide for all 
derivatives. Therefore, it suffices to use a global grid refinement based on, for example, the first 
spatial derivative of the temperature. 

Note from equation (1) that it is also possible to obtain an estimate of the third- and 
higher-order derivatives of the scalar variables by means of the derivatives of the reaction rate. 
However, we will not use this as a refinement criterion in this paper, because we will not deal with 
the chemical details of the combustion model. 

The method of grid refinement chosen, has the advantage that it is always possible to find the 
value of the variables by either the discretizcd equation (equations (lOHl6)) or by interpolation. 
Therefore, if an interpolation scheme is used in which the second-order derivative is represented 
correctly, there is no loss of order of approximation. The chosen interpolation is 

f P  =h' + U;\ + f B  -fC -fD)/2 (18) 
with points P, P', A, B, C and D as shown in Figure 4 and frefers to the dependent scalar 
variables T, Y, or w. Higher-order interpolation schemes (including more grid points) based on 
Taylor-expansion methods are not used because they tend to yield non-physical oscillations. 

We now turn to the determination of the flow-field variables in the interpolation points. One of 
the velocity components (up or up) in the interpolation points (depending on the direction of 
interpolation) is calculated using equation (13) to assure mass conservation around the point P .  
The other velocity component may be calculated using equation (18) on either pu or pu. 
Furthermore, the stream function (qp) is calculated using the central-difference approximation to 
its derivative. This gives 

( P A  - 2 q P  + q B ) / A Y 2  = @AUA - P B u B ) / 2 A Y  (194 
or 

( P A  - 2qP + q B ) / h 2  = - @AvA - b v B ) / Z h  

for Ax = (x,, - xB)/2 or Ay = bA - yB)/2 equal to zero, respectively. 

Figure 4. The locally refined grid continuous line: the boundary of the refinement (x) points determined by the discretizcd 
equations (interior points) (0) points determined by interpolation 
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For managing the grid points, a fairly excessive (but easy) method is chosen in which each point 
is described by its kind (interior, boundary or interpolation), place ( x ,  y), the grid-point numbers 
of the eight neighbours (N, NE, E, SE, S, SW, W, NW) in the refinement level of P and the 
grid-point numbers of the four (in north, east, south and west direction) possible intermediate 
points in the hgher refinement level. This means storage of 13 integer and 2 real values for every 
point. It is possible to manage the grid with less use of memory.' However, this does not seem to 
be of interest, since the storage of all variables consumes far more memory. Furthermore, the 
method chosen makes it possible to find all points and values needed in the calculations fairly 
quickly, which is of course an advantage with respect to the calculation time. 

6. SOLUTION PROCEDURE 

The calculations in each iteration loop, as presented in Figure 1, start with the calculation of the 
density (according to the equation of state), the transport coefficients and source terms using the 
most recent values of all variables. The discretized equations for T, Yi and o become linear and 
uncoupled in this way. After this, the stream-function field (9) is solved according to equation (16) 
(with the old values of u and 0). Next, the flow field (u, u) is updated using equation (13) with the 
new values of the stream function. The flow field now satisfies the continuity equation and new 
solutions to the discretized scalar equations for T, Yi and o may be calculated. This iteration loop 
is repeated until a stable solution is reached, while the grid is updated each time after a given 
number of iteration loops. 

A set of linear equations (first, equation (16) for 9 and, next, equation (10) for T, Yi and o) has 
to be solved during each iteration loop. There are numerous ways to do so. Some of these (the 
Jacobi, Runga-Kutta, Gauss-Seidel and A(1ternating) Wirection) I(mp1icit) method) will be 
described here shortly and compared in terms of the convergence rate in the combustion problem 
(see Section 8). 

In the Jacobi method, the linear equations (equations (10) and (16)) are rewritten as 

where superscript n denotes the nth iteration loop. The value off in the (n + 1)th iteration is 
calculated using underrelaxation (when needed): 

fl+l =fl+ qu; -m (21) 

with relaxation parameter q. Equations (20) and (21) may be combined into 

For the variables w, T and Yi, this means that each Jacobi iteration is in fact a transient 
Euler-explicit time step, with a local time step equal to q/qP; the left-hand side of equation (22) 
represents the discretized form of the transient term d f la t  in the conservation equations. This is 
of course not true for 9, since there is no transient equation for cp. Therefore, the successive 
solutions of the Jacobi iterations only represent a proper time sequence when, on each time step, 
an accurate solution of equation (16) is calculated. 

It is also possible to use more than one Jacobi loop (equation (22)) on the same set of linearized 
equations (i.e. S and + remain fixed), i.e. to solve the linearized equations with more accuracy 
before performing a new linearization. However, this does not lead to a decrease of the number of 



NUMERICAL FLOW MODELLING 507 

global iteration steps, which is probably caused by the sensitivity of the solution to small changes 
in the fuel-consumption rate in equation (10). 

This is also true for Runga-Kutta (RK) methods, in which a number solutions of previous 
Jacobi iterations cf", f"-'; a )  are combined into a new solution v" ) .  We have tested the 
two-step and rational three-step method,I6 which both turn out to lead to the same type of 
convergence behaviour. There are in fact two possibilities to use RK-methods. First, they may be 
applied on the linearized equations (using the same S and $ on each Jacobi iteration loop). This 
means that the source-term update is delayed, which causes convergence to slow down. Second, 
they have been applied to the total set of equations (with updates of S and 4 after each Jacobi 
iteration loop), thus predicting the evaluation of the coupled variables. In this case, the RK- 
methods tend to slow down convergence (or, in some cases, even cause divergence). This may 
again be caused by the sensitivity of the solution to changes in the fuelconsumption rate. 

Another alternative is the Gauss-Seidel method, which uses the most recent value offj on the 
right-hand side of equation (20) instead off3. This has the advantage that it should lead to the 
stable solution quicker than the Jacobi method and does not need storage of the old solution. 
However, a big disadvantage of the Gauss-Scidel method is that, when the numbering of the grid 
points is structured, the errors tend to propagate along the direction in which the update of the 
solution takes place. In the case of combustion modelling, this gives rise to a flame front, which 
tends to move back and forth during the calculation. When an adaptive, locally refined grid is 
used, the region of refinement moves back and forth with the flame (thus causing a slowly 
converging solution), unless we wait until the flame has stabilized sufficiently, before the grid is 
updated. Therefore, on adaptive locally refined grids, it seems more sensible to use Jacobi instead 
of Gauss-Seidel iteration. 

The methods described previously, treat the coupling of the solution of a variable in different 
grid points (almost) fully explicit, which has the big advantage that no matrix equations have to 
be solved during the calculation process. Note that the numbering of grid nodes and the matrix 
may very well be unstructured in the locally refined grid. However, it is possible to maintain 
structured ngde numbering in the locally refined grid in such a way that the Alternating Direction 
Implicit (ADI) rnethodl6 can be used. The advantage of the AD1 method is that it is more stable 
and leads to the stationary solution quicker than the Jacobi and Gauss-Seidel methods. 
Furthermore, the number of calculations needed in one iteration loop is only slightly larger than 
in the Jacobi or Gauss-Seidel methods. An additional advantage compared to Gauss-Seidel 
iteration is that the errors do not propagate in one direction but are always spread homogen- 
eously. 

However, the use of the AD1 method has two major disadvantages. First, it calls for the 
additional storage of variables to fill the tri-diagonal matrix equation and, second, the numbering 
of the grid points and the coupling of different refinement levels on a locally refined grid calls for 
additional attention. In terms of reduction of calculation time, it might be rewarding to perform 
further study on the use of more complex implicit coupling of the different refinement levels. 
Using the AD1 iteration method on a locally refined grid has not been done before and the 
optimization of an AD1 solver on such a grid is, therefore, subject for future study. 

The different iteration methods have been compared for typical combustion problem described 
in Section 8. The speed-up caused by the usc of AD1 on a equidistant grid is clearly shown in 
Figure 5(a), where the residuals during the solution procedure using AD1 are compared with 
those using Jacobi and Gauss-Seidel methods. However, as Figure 5(b) shows, the application of 
AD1 still has to be improved, before it is useful on a locally refined grid. Furthermore, each 
iteration in the AD1 method takes roughly 1.5 times as much computing effort as an iteration in 
the Jacobi or Gauss-Seidel method. The use of the AD1 method in its present state of develop- 
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Figure 5. Comparison of the decrease of the residuals during the iteration process of Jacobi, Gauss-Seidel and ADI: (a) on 
an equidistant grid; (b) on a fixed locally refined grid 

ment on a locally refined grid, therefore, increases computation time. In the remainder of this 
paper, we will use the Jacobi method instead. 

7. TEST PROBLEMS 
The accuracy of the discretization methods presented in this paper is tested using two benchmark 
problems: a liddriven cavity and the flow over a thermal step. 

7.1. A lid-driven cavity 

The liddriven cavity problem (as shown in Figure 6) is used to compare the accuracy of our 
solver with that of other non-staggered grid solvers. l 7  The different discretization methods 
described in Section 3.1 will be compared, for the scalar equations (equations (10) and (1 1) applied 
to the vorticity equation) as well as for the flow field (equations (12) and (1 5) and equations (1 3) 
and (16)). In this benchmark, the flow field is solved for an incompressible isothermal (p = 1) flow 
with an additional term 

with 

a = x4 - 2x3 + x 2  

b = y4 - y2 

A = - 2 4 ~ '  + 60x4 - 56x3 + 24x2 - 4~ 

B'= - 2 4 ~ '  + 8y3 - 4y 

(23b) 

(234 

(234 

(23e) 
added to the source term on the right-hand side of the vorticity equation (6). The analytical 
solution (shown in Figure 7) to this problem is given by 
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u=v= q=o 

Figure 6. Geometry treated in the liddriven cavity benchmark 

Figure 7. The velocity vectors according to equation (24) 

and 

aa 
u ~ ~ ( x ,  JJ) = - 8b- ax 

Note that this solution does not depend on the Viscosity (p). 

of the deviation 
In Table I, the numerical values (u,,,,, and urn,,,,,) are compared with the exact solution by means 

where N denotes the number of grid nodes (a, is defined accordingly). 
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Table I. Deviations (uUau) as defined in equation (25) for p = 1 and p = 0.01 
~~ ~ ~ 

Grid u"(p = 1) u"(p = 1) uu(p = 0.01) u"(p = 0.01) 

Shih' 7 (21 x 21) 
Using (1 2) and (1 5) 
With hybrid discretization 

Uniform 21 x 21 
Locally refined 

Uniform 21 x 21 
Locally refined 

Uniform 21 x 21 
Locally refined 

Using (13) and (16) 

With hybrid discretization 
Uniform 11 x 11 
Uniform 21 x 21 
Locally refined 

With power-law discretization 

With upwind discretization 

0003 

000289 
0 0 0 5  

000289 
0 0 0 5  

000284 
0 0 0 5  

0.00125 
000024 
0o0084 

0003 

000306 000301 
0.006 0.00701 

000306 000363 
O M  0008 

0003 17 000835 
ooo6 0014 

0.00 103 0.00570 
0~00018 0420078 
0-00085 000377 

000307 
0.007 

0.00412 
00 1 

00120 
0023 

000584 
040085 
00037 1 

As Table I shows, our results compare well with the results of Shih et a1." for all three types of 
discretization of the vorticity equation, combined with the use of the flow-field discretization 
techniques given by equations (12) and (15). The hybrid and power-law schemes give the best 
results. This is explained by the fact that these schemes have no artificial diffusion for small Peclet 
numbers (< 2), as opposed to the upwind scheme. For this test problem, the higher-order 
flow-field discretization scheme given in equations (13) and (16) improve the accuracy of the 
solution on the 21 x 21 grid by approximately a factor of 5. In fact, the values found on an 
11 x 11 grid using the higher-order equations are of the same order of magnitude as the crU," values 
found on the 21 x 21 grid using equations (12) and (15). 

The accuracy and stability problems for p < 0.1, mentioned by Shih et d.," are circumvented 
by the use of the discretization schemes, presented in this paper. Therefore, stable and accurate 
results are found for all p( > 0). 

The results of a 2-layer refined grid on a 11 x 11 coarse grid, using the first derivative of the 
vorticity as the refinement criterion (see Figure 8), are also presented in Table I. These grids 
consist of about 300400  grid points. The values in Table I indicate that this problem is not well 
suited for the application of a local grid refinement. This is also shown in Figure 8 in which three 
grids are presented, using the first derivative of cp, o or u2 + u2 as the refinement criterion, 
respectively. The differences in these grids show that different variables have their steepest 
gradient in different regions. In effect, this means that the solution to this problem calls for local 
refinement on the whole domain and a uniform grid is, therefore, preferred. 

7.2. Flow over a thermal step 

In the previous test problem, the locally refined grid proves to be of little use. This is due to the 
fact that the accuracy of the solution is of the same order of magnitude in most of the calculation 
domain. The performance of the algorithm, proposed in this paper, is tested by means of an 
additional test problem, which contains a relatively small area with steep gradients. In this test 
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Figure 8. The 2-layer refined grid on an 11 x 1 1  grid from left to right bascd on gradients of q, o and u2 + u2 

u= v=O m/s 

outflow 0.1 m I 

inflow I 
u=0.25( 1 -y2/O.O025) m/s 

v=O m/s 

Figure 9. The calculation domain for the flow over a thermal step 

problem, the flow field over a thermal step is solved in a square domain of 01 x 01 mz as shown 
in Figure 9. The temperature field is fixed and the energy equation is, therefore, not solved. The 
resulting flow field resembles that of a combustion problem. The use of a fixed temperature field 
rather than using a real two-dimensional flame as a problem, is done to have a spatially fixed 
'flame'. The position of the flame depends on the accuracy of the solution in a real combustion 
problem, which means that the accuracy of the flow-field solution is tested separately. The 
thermal step is constructed by fixing the temperature as follows: 

(2W 

(26b) 

T(X,  y) = 300 { 1 + 2 exp K ( r 2 / r i  - I ) }  

T(X,  y )  = 300 ( 5  - 2 exp ~ ( 1  - r z / < ) }  

for r < ro 

for r > ro 
and 

with r2 = xz + yz and ro = 005. Note that the temperature increases by a factor of 5. Therefore, 
the density decreases by a factor of 5 according to the equations of state (equation (4)). In order to 
get a temperature gradient at r = ro of about 500 K / m ,  which is comparable to the gradient in 
an atmospheric methane/air flame, K is chosen equal to 25. The values of the viscosity and density 
are given in Table 111. The isotherms and streamlines for this test problem are shown in Figure 10. 
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- .- . 

Figure 10. The results for the flow over a thermal step (from left to right): the 4-layer rdincd grid on an 1 1  x 11 basis, the 
isotherms and the streamlines 

Table 11. The results of the thermal step problem, presented by means of the values of 4 u and Q, in 
the centre of the calculation domain; the deviation defined in equation (27) for u, v and Q,; the 
computational time, number of iterations (Niter) needed to obtain a stable solution and the number 

of grid nodes used 

Grid Q,,,,~ umid vmid 6, 6, 6,  6, Time Ni,,, Points 

Uniform 
1 1  x 11 
21 x 21 
41 x41 
81 x 81 
161 x 161 

11 x 11 
2 layers 
3 layers 
4 layers 
21 x21 
2 layers 
3 layers 

5.55 0.364 0208 0044 
5-59 0340 0197 0057 
5-66 0339 0197 0053 
5.69 0357 0212 0020 
5.70 0.368 0221 0.0 

5.67 0344 01% 0041 
5.69 0358 0209 0.018 
5.68 0.369 0219 0007 

5.69 0358 0210 0019 
5.67 0370 0221 0008 

0135 
0135 
0-111 
004 1 
0.0 

0080 
0 0 3  1 
0012 

0036 
0017 

0694 0017 
0565 0014 
0431 0012 
0166 0005 
0.0 0 0  

0407 0012 
0154 0005 
0062 0003 

0165 M)o5 
0.075 oM)4 

~ 

00:00:01 
00:00:18 
00: 05 : 24 
00: 5 8 : s  
15:48:52 

00:oo: 12 
00:01:50 
00:09:21 

00:02: 17 
00:09:59 

~ 

150 
750 
ux)o 
8000 

32000 

500 
2000 
5000 

m 
5200 

121 
441 
1681 
6541 

2592 1 

418 
852 
1626 

1047 
1722 

Note that the refined grid is fixed during the iteration process, because of the fixed temperature 
field. 

The results, accuracy and computational time of the solutions are compared in Table I1 for 
5 equidistant grids and 5 refined grids based on coarse uniform grids of 11 x 11 and of 21 x 21 
points. It is worth noting that the grid spacing in the fourth layer of refinement on the 11 x 11 grid 
(also presented in Figure 10) equals the spacing in the uniform 161 x 161 grid. This is also true for 
the third layer of refinement on the coarse 21 x 21 grid. Results for both velocity components as 
well as for the stream function in the centre point of the domain are presented in Table 11. The 
results on the 161 x 161 grid are used as reference values (they are the most accurate). This is 
possible because all points occurring in different calculations are part of the grid points in this fine 
uniform mesh. The comparison is made by means of a global relative deviation (6) defined as 

c l f - f i 6 1  x 1 6 1  I 
N 

CI f l  
6, = 

N 
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where f represents either u, u, o or (p in a node (x, y) of the grid under examination and 
fi.51~161 denotes the solution in the same node on the uniform 161 x 161 grid. Furthermore, 
N denotes the number of nodes of the grid under examination. Therefore, 6, is a measure for the 
average relative deviation offfromfi61x161. 

Table I1 clearly shows the benefits of the locally refined grid. The refined 4-layer grid on the 
coarse 11 x 11 grid and the refined 3-layer grid on the coarse 21 x 2 l  grid are obviously more 
accurate than the solution on the uniform 81 x 81 grid, while they use 25 per cent of the grid 
points and only 15 per cent of the computation time. As a matter of fact, the accuracy of the 
solution on the 81 x 81 grid is comparable with that on the refined 3-layer grid on a coarse 11 x 1 1 
grid and on the 2-layer refined grid on a coarse 21 x 21 grid, whereas the refined grids use only 15 
per cent of the number of points and 3 per cent of the calculation time. 

8. COMBUSTION MODELLING 

In order to show that the presented algorithm converges towards the stable solution when the 
adaptive grid technique is used, we show some numerical results obtained for a laminar premixed 
methane/air flame on a slot burner (Figure 11). The combustion process is assumed to be 
governed by a one-step reaction (fuel (fu) + oxygen (ox) + products (pr)) with an Anhenius-like 
fuel-mass consumption rate equal to 

p f u  = - ,,=+qYr")" (YOX)flcxp( - TJT) (28) 
where A, z, B and T. are rate parameters. This expression for the fuel-mass consumption rate has 
been used as the right-hand side of the conservation equation (1) for the fuel-mass fraction. 
Multiplied by the stoichiometric ratio (s, mass of oxygen consumed per unit mass of fuel) or by the 
enthalpy release ( - AH, heat of combustion per unit mass of fuel), equation (28) is the right-hand 
side of equation (1) for the oxygen mass fraction and the enthalpy, respectively. In order to get 
a physically realistic flame, we have chosen a combination of physical and chemical parameters 
(see Table 111) so that the flame speed of methane/air mixtures in a flat burner-stabilized flame are 
correctly reproduced.'' The massdiffusion rates of methane and oxygen in nitrogen have to be 
added to complete the set of parameters presented. They are chosen in accordance with the 
kinetic theory of binary mixtures.' -' 

In Figure 12, the results of this calculation are presented by means of the calculated 2-layer 
refined grid on a coarse 51 x 21 grid. This figure illustrates the isotherms and the streamlines. This 
stabilized flame has been calculated without difficulties in approximately 2000 Jacobi iterations 
with a relaxation factor q = 0.4, while the grid is adapted on each 500th iteration. The total 
calculation time was about 1 h on a Silicon Grafics 35/41) workstation. 

................. 9!?!?9 ........................ 

ink  amet 
0 

............................................. b ...... 
m 

Figure 11. The geometry of the Bunsen-like slot burner. inkt conditions: stoichiometric methaae/air mixture, temper- 
ature T = Mo K, parabolic velocity profile with maximum velocity of 1.21 m/s. 

u 
l lml  
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Table Ill .  The physical and chemical parameters 
used in the flame model 

Parameter Value Dimension 

1.241 
L(T/15Oo)' 

0.092 
0-77 

0-71A/cp 
1365 

4.813 x 10' 
3.883 

2.8 
1.2 

16900 

2.6 1015 

Figure 12. The resulting flame (from left to right): the 2-layer refined grid, the isotherms (from 400 to 2200 K in steps of 
200 K) and the streamlines 

9. CONCLUSIONS 

The stream-function-vorticity formulation, used in this paper, makes it possible to perform 
!low-field calculations on a locally refined, non-staggered grid without non-physical checker- 
board oscillations. The resulting set of linear equations is solved using the easily implemented 
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Jacobi method. Furthermore, it appears that implementation of more complex linear solvers, 
such as ADI, does not improve the rate of convergence towards the stable solution in the locally 
refined grid. 

The uniform grid solver compares favourably with the results of algorithms found in the 
literature, especially when higher-order flow-field equations (formed by equations (13) and (1 6)) 
are used in combination with the hybrid or the power-law discretization method for the scalar 
equations. Furthermore, in the test problem which is characterized by a local steep density 
gradient (comparable with the gradients present in laminar premixed methane/air flames), the 
solution of the flow field in a locally refined grid proves to give approximately the same accuracy 
as a uniform grid in about 3 per cent of the calculation time, using about 15 per cent of the grid 
points. 

The flame calculation clearly shows that the algorithm, presented in this paper, converges 
towards a stable solution when the adaptive grid technique is used. The time needed to perform 
such a calculation is about 1 h on a Silicon Grafics 35/4D workstation, which makes the use of the 
algorithm feasible in combustion engineering. 
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