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Modeling of Burner-Stabilized Hydrogen/Air Flames
Using Mathematically Reduced Reaction Schemes

R.L. G.M. EGGLES and L. P. H. De GOEY  Eindhoven University of Technology,
Faculty of Mechanical Engineering (WOC), PO Box 513, 5600 MB Eindhoven,
The Netherlands

(Received November 15, 1994; in final form April 20, 1995 )

ABSTRACT—A mathematical technique is used to reduce several hydrogen/air reaction systems to one-
and two-step schemes. The reduction technique is based on the use of intrinsic low-dimensional manifolds in
composition space as introduced by Maas and Pope (1992). In this method it is assumed that the fastest
reaction groups of the chemical source term are in steady-state.

For a reaction mechanism that does not include HO,, a one-step reduced scheme is used for burner-
stabilized hydrogen/air flame calculations. It appears that the one-step reduced scheme predicts the flame
structure quite well for several values of the equivalence ratio and mass flow rates. The differences in flame
temperature between the reduced scheme and full scheme calculations are less than 50K.

A one-step reduced scheme is also used for the reaction scheme including HO,. For this scheme, however,
only low mass flow rates can be used, otherwise the flame will blow off. This is caused by the fact that the

* one-step scheme underestimates the adiabatic burning velocity considerably (Eggels, 1995). However, the

one-step reduced scheme still predicts the main species qu1te well. For larger mass flow rates, close to the
adiabatic mass burning rate, a two-step reduced scheme is used instead. The two-step scheme gives
a significant improvement of the H,/air flame structure, as expected.

Key Words: Laminar flames, reduced reaction mechanisms

INTRODUCTION

To describe combustion phenomena in more-dimensional combustion geometries, the
use of complex chemistry leads to excessive computational effort. On the other hand,
accurate chemical information is often required e.g., for the prediction of the NO
emission. A large part of the combustion research today is therefore based on the
application of reduced reaction mechanisms. We can identify different approaches to
reduce a reaction mechanism. The conventional technique is based on steady-state
assumptions for intermediate species and partial-equilibrium assumptions for certain
reactions (Peters, 1987, 1993) (Smooke, 1991). The strategy applied to find out which
species and reactions may be taken in steady-state or partial-equilibrium requires much
understanding of chemical kinetics. Another method to simplify chemical kinetics is to
decouple the reaction system into fast and slow reaction groups. These reaction groups,
which are linear combinations of elementary reactions, can be obtained automatically,
so that less insight in chemical kinetics is required. When the fast and slow reaction
groups are known, different approaches can be followed.: Lam (1988) and Goussis
(1992) use this mformat_lon to find out which steady-state assumptions for the species
and partial-equilibrium assumptions for a set of elementary reactions can be applied
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166 R.L.G.M. EGGELS AND L. P. H. De GOEY

locally. This CSP (Computational Singular Perturbation) method can be used to solve
the full set of differential equations of the complex reaction system fast and accurately.
The knowledge of reaction groups with different time scales can also be used by
applying partial-equilibrium assumptions for the fastest reaction groups (Maas, 1992).
The difference with the previously mentioned conventional reduction technique is that
itis not necessary to know the relationship between the reaction groups and elementary
reactions. It has been shown (Maas, 1992, 1994), (Eggels, 1995) that this method gives
appropriate resultsifit is used for a perfectly stirred reactor and flame calculations. The
computational effort for these reduced calculations is much smaller than for the full
scheme calculations. Another major difference with other reduction methods is that the
solution method is separated into two parts. The low-dimensional manifold in compo-
sition space, defined by the steady-state equations, is parameterized by using progress
or controlling variables and is calculated first. This implies that in the second
step, the actual flame calculations, only the differential equations for the controlling
variables have to be solved by using the manifold, in form of look-up tables, for the
other species.

We use this method to reduce the hydrogen/air reaction mechanism to one- and
two-step reduced schemes. Previous investigations (Eggels, 1995) have shown that
a hydrogen/air system without HO, species, reduced to a one- step reduced scheme,
gives accurate results for adiabatic ﬂat flames. If HO, is included, the time scale of the
slowest process that is supposed to be in steady-state is of the same order of magnitude
as the time scale that describes the time evolution on the manifold, for relatlvely low
temperatures. The specific mole number of HO, reaches its maximum in this region.
Because the chemical source term and also the burning ve10c1ty is sensitive
to variations in HO, specific mole numbers, this scheme does not give appropnate
results.

In this paper we reduce H,/air reaction schemes, with and without HO,, to
a one-step mechanism. As expected, it is not possible to model burner-stabilized flames
for flow velocities close to the adiabatic burning velocity with the one-step reduced
scheme when the reaction mechanism including HO, is applied. This problem is solved
by the application of a two-step reduced scheme, for large flow velocities. The method
to reduce a reaction mechanism is explained briefly in the next section. We come to the
use of the low-dimensional manifolds for the flat flame calculations in the subsequent
section. The results are compared with full scheme calculations and discussed in the
last section, finally.

MATHEMATICALLY REDUCED MECHANISMS

The mathematical reduction technique, introduced by Maas and Pope (1992), is based
on the assumption that fast reaction groups in the combustion process are in steady-
state. The fast and slow reaction groups are separated with the use of an eigenvector
analysis of the Jacobian matrix of the chemical source term (Maas, 1992) (Lam, 1988)
(Eggels, 1995). We suppose that convective and diffusive transport processes proceed
much slower than the fastest reaction groups. To study the dynamical behaviour of the
reaction mechanism, diffusive and convective terms are omitted. The effect of convec-
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tion and diffusion is considered later on in this paper. Therefore, we consider the
following system:

ar "
where ¢, denotes the specific mole number of species i. The specific mole number is
defined as the mass fraction of the species Y; divided by its molar mass M. The system is
described in composition space by writing the composition in vector notation:
¢=(¢y..., d,)", where n denotes the number of species. Equation (1) is linearized
around a reference composition ¢°:

9 1)

ow(¢°)
ig
When Equation (1) is transformed to the basis of eigenvectors, using ¢ =S¢ (the

coordinates in the eigenvector basis are denoted with an accent), the differential
equations are decoupled:

w(P)=w(9°)+——(d— ¢°). @

W @) A -6, 3

where A is the diagonal matrix of eigenvalues. The solutions of these decoupled
equations are found easily and are given by:

0
1= 910+ " exp () - 1. @

Equation (4) indicates that the typical time scales are
7= 1/|%e(2)], )

where %e(4;) denotes the real part of eigenvalue i. Ordering of the eigenvalues in
descending order of real parts (Ze(4,) = --- > #e(4,)), provides that the fastest reaction
groups ¢; with negative real parts are those with the highest index i. Note, that reaction
groups which correspond with eigenvalues with positive real parts can not be assumed
in steady-state. The steady-state assumptions for the fastest reaction groups are given
by:

%zO, i=n+n,+1,...,n 6)
The number of reaction groups that has to be taken in steady-state depends on the
desired dimension of the reduced scheme n, and is equal to n — n, — n,, where n, is the
number of elements in the system. _

To obtain the steady-state assumptions in the original basis we transform Equa-
tion (6) by using ¢ = S~ ' ¢, where S~ ! denotes the transformation matrix given by:

L
— S1 j—

st=l ) o
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where s| are the left eigenvectors of the Jacobian matrix. This yields:

a ‘
L 98 _ P —
<Si , 8t> 0, z n.+n,+1,...,n tJ]

Substitution of Equation (1) gives finally:
(7, w)=0, i=n+n,+1,...,n 9

These equations define a low-dimensional manifold in composition space. Processes in
this subspace proceed slower than processes outside the manifold. ‘

Since the steady-state Equations (9) depend on the local composition of the mixture
it would cost too much computational effort to solve the steady-state relations during
the application of the reduced scheme in flame computations. The Equations (9) are
therefore solved beforehand instead, by making a parameterization of the manifold in
the form of controlling variables, which describe the progress of the process on the
manifold. Linear combinations of the specific mole numbers o, = (&, @) may be chosen
as controlling variables, as long as there exists only one manifold composition for each
combination of the controlling variables.

It has to be kept in mind that the specific element mole numbers, enthalpy and
pressure appear as additional degree of freedom on the manifold as these may change
by transport processes in the flame. The specific element mole numbers, denoted by ¥;
are given by y, = (1, @), where p; denotes the composition vector of element i (i ; 1is the
number of atoms of element i in species j). These specific element mole numbers are not
changed by chemical reactions as they are equal to z,/W,, with z; the mass fraction and
W, the molar mass of element i. In general, the number of degrees of freedom of the
manifold is equal to n -+ n,+ 2. The manifold composition is calculated for all
physically reasonable values of the above introduced parameters. The set of equations
that has to be solved to calculate a point on the manifold for controlling variables
% -+ 0L, specific element mole numbers i, -+ x, , enthalpy h, . and pressure Dre 18 glven
by g = o, denoting: '

g:=(&, @) —a; =0, i=1,...,n,
9:=(Bi—rpy> D) — Xi—ny, =0, i=n+1,...,n +n,,
g;=(sf, w)=0. i=n4+n,+1,..,n (10)
In+1 = i Mi¢i<h?+Jv cpitdr>;href’
i=1 To
Int2 =D — Drerr

To obtain the specific mole numbers and temperature in a single manifold point; the
Equation set (10) is solved by using Newton’s method, which can be extended with
a pseudo time-stepping method to enlarge the convergence region if necessary.

Up to here we only considered a time-dependent system. In this paper, however, we
study burner-stabilized flat flames. For these flames, the velocities-are much lower than
the speed of sound so that the pressure may be assumed to be constant. In this paper we
will use unit Lewis numbers for simplicity. It can be shown that the specific element
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mole numbers remain frozen and disappear as degree of freedom on the manifold.
Hence, the number of degrees of freedom reduces to n, + 1. We have to emphasize that
the use of unit Lewis numbers is not: physically realistic. The main objective of this
paper, however, is to investigate the performance of the chemical reduction technique.
For the comparison of reduced and complex computations, the transport model is
therefore of minor interest. To make a fair comparison unit Lewis numbers are used for
the reduced as well as for the complex computations. For the flat flames we have to take
convection and diffusion into consideration. How this is done, is explained in the next
section.

BURNER STABILIZED FLAMES

The transport equations for the species in stationary flat flames are given by:

.do. d ; '
Mdd)l ( Diil(il>=pwi fori:l,...,n, (11)

dx dx P

where M = pu denotes the constant mass flow rate. Apart from these conservation
equations for the components we have to take the enthalpy equation into consider-
ation.

For the reduced scheme only », differential equations for the controlling variables
and one for the enthalpy have to be solved. How the differential equations for the
controlling variables are obtained from the original equations for the species is
explained in this section. This is done in two steps. First, the composition is described
by a reduced number of variables. The differential equations of the species are projected
on the manifold, subsequently.

To describe the evolution of the process on the manifold, we substitute
¢=P(oy, ..., , h)in Equation (11). For the derivatives d¢;/d x we may write:
do; & %6“j+a¢i?_h

3

dx & 00;0x ' 0hox

(12)

As'we consider a one-dimensional system, all variables depend on the spatial coordi-
nate x only. Suppose that a suitable controlling variable «; increases or decreases
monotonously with x. Then, all variables may be considered as a function of «; also.
This means that we may write do;/0x = (o;/0c;) (Oot;/0x) and 0 h/dx = (Oh/do: 1) (0;/0x).
Substitution of this into (12) gives:

dg; _d¢,do

dx doc dx (13

Note that we have to use monotonously increasing or decreasing controlling variables,
otherwise d¢,/da; could be zero.
For the dlfferentlal Equation (11) of the reduced scheme we now obtain:

d¢;do; - dpD,;de, ¢ ((do;\? dqbidzocj _ ‘
Mdoc dx do; E&—<dx> pD( dx +dzxjdx2 pwi—O_ (14)
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As Equation (14) yields for all i, we have n equations and only n, independent variables
o;. Thisis not a contradiction, because variations of the compositionsare restricted; the
composition has to be on the manifold. Therefore, Equations (14) are projected on the
manifold. In Appendix A we will show that projection of the convection term and the
chemical source term are identical to the convection term and source term of the
original species equation for the controlling variables (11). From a physical point of
view it can be understood that the convection and chemical source term vectors are
already in the tangent plane of the manifold, as observed by Maas and Pope (1994). The
projection of the diffusion term, however, is not equal to the diffusion term of the initial
differential equation for the controlling variable. To project the diffusion term on the
manifold we can use a projection method based on the tangential direction vectors of
the manifold as well a projection method based on the eigenvectors. Both projection
methods are described and explained in more detail in Appendix A. Here, we used the
projection method based on the tangential direction vectors, so that we don’t have to
store eigenvectors. Furthermore, in Appendix A it is shown that differences between the
projection methods are small. The differential equation reads finally:

LAy O d¢;\* d(pD)) do 2 dg, d* ¢, do; 2 do,\* dzcxj
MEi;[(%;) do; \dx +docjpDidocf ix) F do pDidx2

i(m) —p&W =0, j=l..n. (3

Apart from the controlling variables we have to calculate the enthalpy in the domain.
As we use unit Lewis numbers, the enthalpy does not change in the downstream part of
the burner. Therefore, the enthalpy is known in the entire domain downstream of the
burner, if it is known on the burner edge. As we are considering a one-dimensional
flame, the flame is only cooled at the burner edge. The enthalpy on the burner edge is
obtained by the specific mole numbers of the species on the burner edge, which are
known as function of the controlling variables and the temperature on the burner,
which is fixed. '

Equations (15) are non-linear in «;. Before we can solve the equations numerically
the non-linear term (do;/d x)? is linearized by writing it as (d a/dx),_ (doy/dx),, where
k denotes the iteration index. The remaining equations are discretized using the
finite-volume method of Thiart (1990).

Starting with a first estimate for the solution, the numerical procedure consists of the
following steps. First, the contributions to one differential equation are calculated.
Then the equation is linearized, discretized and solved by the use of a tridiagonal solver.
This procedure is repeated for the equations of the other controlling solver. This
procedure is repeated for the equations of the other controlling variables. The enthalpy
is updated finally. It is expected that the solution method can be improved considerably
by using an implicit method in which the equations of all variables are solved
simultaneously. Further improvement can be established by using a local grid refine-
ment method on the manifold. Here, we use equidistant grids for the time being for
reasons of simplicity.
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RESULTS

First we apply the above described method on flat flames using one-step reduced
schemes using reaction schemes without and with HO,, denoted as System I and II,
respectively. The reaction schemes are shown in Appendix B. For these reduced
schemes we used @y, as controlling variable. The results are compared with results of
calculations using the full reaction system. We use unit Lewis numbers (Le; = 1) and
constant and for all species equal specific heat ¢, = c,. These approximations are not
essential for the reduction method and are introduced for simplicity. The one-step
reduced scheme of System I is applied to burner-stabilized flame calculations with
several equivalence ratios @ and mass flow rates M.

In Figure 1 we show one example of the results of the full scheme and reduced
mechanism. The temperature at a distance of 1.0cm down-stream of the burner is
shown in Figure 2 for all full scheme and reduced calculations. Considering these
figures we may conclude that the one-step reduced scheme of System 1 gives quite
accurate results compared with full scheme calculations. Moreover, it can be seen that
the differences between reduced and full scheme computations increase for increasing
@ values.

To apply the one:step reduced scheme of System II to burner-stabilized flame
calculations, the flow velocity must be considerably lower than the adiabatic burning
velocity, otherwise the flame will blow off. This agrees with results obtained before

0.2 0.3 0.4 0.5

X incm

FIGURE 1. Profiles of species using full (lines) and one-step reduced mechapi‘sm (dashed lines) applied to
burner-stabilized flames with an equivalénce ratio ¢ = 0.9 and mass flow rate M = 0.10 g/(cm?s), for reaction
System I. The maximum values (scaled to 1) are: H:8.11072, OH:2.41072 H,:2.6 10~ ! and T:2610.
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FIGURE 2 - Comparison of flame temperature at a height of 1.0 cm down-stream of the burner between
one-step reduced (+) and full scheme (o) calculations, as function of equivalence ratio ¢ and mass flow rate
M, for reaction System L.

0.4

0.2 T

0.2 0.3 0.4 0.5

X incm

FIGURE 3 Profiles of species using full (lines) and one-step reduced mechapiém (dashed lines) applied to
burner-stabilized flames with an equivaleénce ratio @ = 1.0 and mass flow rate M = 0.14 g/(cm?s), for reaction
System II. The maximum values (scaled to 1) are: H:8.51072, OH:241072H,:2.810~ 2 and T:2710.
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(Eggels, 1995) for adiabatic flames, where it is found that the adiabatic burning velocity
of the one-step reduced scheme is considerably lower than the burning’ veloc1ty of the
full system, in case of System IL.

Results of the one-step reduced scheme calculations using a mass flow rate of
0.14 g/(cm?s) are presented in Figure 3. The adiabatic mass burning rate for System IIis
equal to 0.193 g/(cm?s). It can be seen that the profiles of the main species are predicted
surprisingly well. The results of the radicals show larger differences. The scheme
predicts the flame structure still quite well, because the composition is predicted well in
the high temperature region.

As the one-step reduced scheme of System I1 can not be used for flow velocities close
to the burning velocity, a two-step reduced scheme is used, to study whether this gives
improvements. As controlling variables we use the specific mole numbers of H,O and
H,. These controlling variables increase or decrease monotonously with x, as was
required when Equation (14) was derived.

The calculation using the two-dimensional scheme is performed for a mass flow rate
M = 0.19 g/(cm?s), which is close to the adiabatic mass burning rate. The results are
shown in Figures 4 and 5. Note that flames using the one-step reduced scheme will blow
off at this flow rate. The two-step reduced scheme, however, gives stable flames. The
results show that the specific mole numbers of the species are predicted well. The main
difference between reduced and full scheme calculations is that the stand-off distance of
the computation with the reduced scheme is larger. The specific mole numbers show
more deviations in the last part of the flame. This is mainly caused by the relatively large

1 HZO

T

0.2 0.3 0.4 0.5

X 1N cm

FIGURE 4 Comparlson of full (lines) and two- step reduced scheme calculations (dashed. lines) with an
equivalence ratio of @= 1.0 and mass flow rate of M = 0.19 g/(cm?s), for reaction System I1. The maximum
values (scaled to 1) are: 0,:1.5107, H,:3.0107 !, H,0:2.7107 ! and T:2750.
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FIGURE S5 Comparison of full (lines) and two- step reduced scheme calculations (dashed lines) with an
equivalence ratio of @ = 1.0 and mass flow rate of M =0.19 g/(cm? s) for reaction System II. The maximum
values (scaled to 1) are: H:6.71072, OH:2.7107? and HO,:2410™%.

grid distance on the manifold there. Furthermore, it appears that an explicit solution
method (solving the differential equations for the controlling variables decoupled) can
be used, due to the fact that the degree of stiffness is reduced by using the reduction
method. It is, however, expected that an implicit method (solving all variables
simultaneously) will be faster.

A few subjects will be studied in more detail in the near future. First of all a problem
that arises during the application of the two-step reduced scheme is that areas on the
manifold are reached where no accurate interpolation can be made. This is related with
the fact that not for all values of the controlling variables manifold compositions are
physically possible (the specific mole numbers may not be negative, the temperature of
the mixture may not be lower than the temperature of the unburned mixture and the
manifold composition has to obey the element conservation equations). Therefore, it
might occur that there are not enough grid points surrounding the interpolation point
to make an accurate interpolation possible. Furthermore, to obtain more physically
realistic results non unit Lewis numbers effects should be incorporated in future
studies.

CONCLUSIONS

A reduction technique, which assumes fast reaction groups in steady-state, is applied to
reduce hydrogen/air reaction mechanisms. The fast reaction groups are obtained with



H,-AIR REDUCED SCHEME 175

the use of an eigenvector analysis of the chemical source term. The one- and two-step
reduced schemes are applied to flat burner-stabilized hydrogen/air flames and the
results are compared with full scheme calculations. The one-step reduced scheme
applied to a reaction scheme that does not include HO,, gives quite accurate results. If
HO, is taken into consideration the one-step reduced scheme can only be used for low
mass flow rates. The flame will blow off otherwise. For small mass flow rates, the
one-step reduced scheme still gives quite accurate results for the flame structure. For
a large mass flow rate a two-step reduced scheme is used, which gives appropriate
results.

APPENDIX A: PROJECTION METHOD

In this section two projection methods are presented to transform the differential
equations for the species (14) to differential equations for the controlling variables (15).
The projection method used in this paper makes use of the tangential direction vectors
of the manifold. A method based on the eigenvectors can also be used. We will show
that the projection of the convection and the source term are identical for both
methods. Moreover, the projections of these terms are identical to the corresponding
terms of the initial Equations (11) of those species which are used as controlling
variables. This means that only the diffusion term in the reduced scheme equations,
differs from the diffusion term of Equation (11). The projection of the diffusion term is
considered in more detail in the last section.

Projection Method Based on Tangential Direction Vectors

For a one-dimensional geometry (flat flame) there is only one direction vector, as the
combustion process is a one-dimensional path on the manifold. Therefore, we may
write:

0 _dodo,

=" 1
do, do,do, (16)

Note that d ¢y/da; denotes the total derivative (see Eq. (12)). The projection operator
which transforms the differential equations of the species into differential equations for
the controlling variables is given by the n x n, matrix P

P= : R (17)
b,
with p, given by:
_do [lde)
b= doci/ E (18)

This is an orthogonal projection, which is also used by Pope and Ma_as (1993) to project
the differential equations of the species on Trajectory Generated Low-dimensional
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Manifolds. We will show that the projected convection and chemical source terms are
identical to the terms in the initial species Equation (11) for the controlling variable.

First, the convection term M ((d¢,;/da 1) (do;/dx)) is considered. The j ™ component of
the projection of the tangential direction vector d¢,/d«; is given by:

R P
do do;” do do; do do;) | |do; do;’
leading to:
dg, doty
da; E&_i
P =) (20)
dg, | |\ da,
do; do;
When we apply this projection operator on the convection term M (d ¢§/dx), we obtain
for the j® controlling variable:
do do;
M< doc) dx Md—):’ @

which is equal to the convective term in the differential equation of ¢, corresponding to
controlling variable o; = ¢,

Now, let us consider the projection of the source term w. As the eigenvectors s; form
a basis of composition space, the source term may be written as:

W= Zn: B;s;. (22)

Using the definition of the manifold (st,w)=0, for i=n +n,+1,...,n and
(s, 8,) = 8;;, where §,; denotes the kronecker delta, we get:

W= i Bis;. (23)
i=1

The tangential direction vectors are parallel to the manifold. The manifold, however, is
also spanned by the first n, eigenvectors so that we write:

oY as; (24)
o i ji=1

From Equatiéns (23) and (24) it can be seen that the number of degrees of freedom is ,.
The equation used to define the manifold and time scales is given by:

dgds, _

do; dt - 25)

Although these are n equations, the vectors d¢/doz and w are restricted to a n,
dimensional subspace, so there are only n, degrees of freedom. Therefore, we may
conclude from (25) that the tangential d1rect10n vectors and the source term are
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parallel, so that the source term may be written as:

_d¢ ' |
v = TG (26)

With the use of (19) it follows easily that:
P'w= ((gl sWheoes (én,a w))T’ (27)

which is again the source term of the differential equation for the species corresponding
to the controlling variable.

Eigenvector Projection

The manifold is defined by steady-state assumptions for fast reaction groups, which are
found by the use of an eigenvector analysis. In the basis of eigenvectors the eigenvalues
are ordered from large to small real parts (Note that most real parts are negative).
Therefore, the reaction groups are ordered from slow to fast. For the reduced scheme
only slow reaction groups will be considered. To obtain the evolution equations for
these slow processes only, we make use of the following filtering (n x n) matrix F’,
defined in the basis of eigenvectors:

(10
F=(g o) 28)
with I the n, x n, identity matrix. All other matrix elements are zero. In the original
basis this becomes:
I0\__,
F_s(0 0>s , (29)

The next step transforms the differential equations into differential equations for the
controlling variables. This gives the following transformation matrix:

10\ _,
P_KS<0 o)s , (30)

where K is a n x n_ matrix, so that P is also a n x n, matrix. Since the controlling
variables are given by a; = (£, @), the elements of K are given by k, ;= ¢;; Forexample,
if the specific mole numbers of species with index 5 and index 1 (¢, = ¢ and «, = ¢,)
are used as controlling variables in a 2-D (n, = 2) reduced scheme and the number of
species is n = 7, the matrix K has the following form:

0000100
K‘Qoooooa’ G

Let us now consider the projection of the source term Fw in more detail. For w — Fw we

may write:
_ TO\\N_, (00N .
(I .F)w-S(I (0 0>)S w—S(0 I)S w—O,. (32).
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Since (s7, w) =0for i =n_ +n, + 1,..., n by definition of the manifold. We have found
that w is not effected by the projection F: )

Fw=w. (33)
Applying the projection and transformation on the source term gives:

Pw =((&, w)....(5,, W), (34)

leading to the same result as the projection method based on the tangential direction
vectors (Eq. 27).

Now, we consider the convection term M(d¢/da,)(do,/dx). Using (24) and

(s7,5;) =6, gives:

.d¢ _d¢
pi®_22
do do’ (33)
and further we get:
9.\ [d
do, do;
pl =] ¢ | (36)
do, | | da,
do;/ \da;

This agrees with the result we have found for the other projection method (19). From
this we may conclude that P and P’ give identical results for the convective and source
terms in the differential Equation (11).

Projection of the Diffusion Term

In this next section we turn to the projection of the diffusive terms. For a stationary flat
flame the differential equations are given by:

alede

do;dx =, 7

where 7z represents the diffusion term, with n; = d/d x(p D;(d ¢;/d x)). Projection of this
equation on the manifold gives:
- dao;

MH —Pr=(&,w)T (38)

As shown in Equation (15) the diffusion term may be written as:

= — _d____.__('oDi) @.‘(ﬁ)z —oD & ¢; (&)2 — D‘ % dz.ch (39)

T Tdey dag\dx “do? \dx "do; dx*
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For equal diffusion coefficients (D, = D), the first and the third terms of Equation (39)
are parallel to d ¢/du;. Note that terms parallel to d ¢/d; give identical results for both
projection methods. The only term which is not parallel to the manifold in case of
identical D, is the second term of Equation (39). Differences between the two mentioned
projection methods arise if this term is large. It is expected, however, that the differences
between the projection methods are small, because of the fact that processes are much
faster outside the manifold than on the manifold. This implies that process will first
move towards the manifold rapidly and will propagate subsequently on the manifold
much slower. In fact, P and P’ both project perpendicular to the manifold in case of
infinitely fast processes outside the manifold. Only in situations where the time scale
difference between processes outside the manifold and processes on the manifold are
small, the projection method based on the tangential direction vectors will be-less
accurate. Then, however, the reduction method in itselfis not accurate: the eigenvectors
are not accurate because diffusion effects-are of importance in that case.

APPENDIX B: USED REACTION SCHEMES

The reaction rates of reaction i are given by the Arrhenius expression:
A;TPexp(—E;/RT), where A, and f; are reaction constants, E; the activation energy,
R the universal gas constant and T the temperature. The coefficients 4;, §; and E;
are successively given after the reactions (4; in cm/mol/s; E; in KJ/mol). Used
collision efficiencies are: iy, = 1.00, fo =0.35, fy.0=106.50, fy,=0.50, fo,=1.50,
fco, = 1.50. :

S ystf;m 1
This reaction scheme includes the following species: O,, H, OH, O, H,, H,0 and N,

The following reactions are used:

H+0,=0H+0 200104 0.0 70.3
OH+O0=H+O0, 1.46 1013 0.0 2.08
O+H,=OH+H 5.0610* 2.67 263
OH+H=0+H, 2.2410* 2.67 184
H,+OH=H,0+H 100108 1.6 138
H,0 +H=H, + OH 4.4510° 1.6 7713
OH+OH=0 +H,0 1.5010° 1.14 0.42
O +H,0=0H+OH 1.51101° 1.14 71.64
H+H+M=H,+M 1.801018 —1.00 0.0
H,+M=H+H+M 6.9910'8 —1.00 436.08
OH+H+M=H,0+M 2201022 ~2.00 0.0
H,0 +M=OH+H+M 3.801023 —2.00 499.41
O+0+M=0,+M 2.9010%7 *1.00 0.0

0,+M=0+0+M 6.8110® —1.00 496.41
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System I1

Reactions and species of System 1, extended with species HO, and the following
reactions. ‘

H+0,+M=HO,+M 2301018 —0.80 0.0
HO,+M=H+0,+M 2.26101% —0.80 195.88
HO, + H=0OH + OH © 1.5010% 0.00 4.2
OH+ OH=HO, + H 1.331013 10.00 168.3
HO, +H=H, +0, 25010 . 000 29
H,+0,=HO,+H 6.841013 0.00 243.10
HO,+H=H,0+0 3.001013 0.00 72
H,0 +0=HO,+H 2.671013 0.00 242.52
HO,+0=0H+0, 1.801013 0.00 —17
OH+ 0,=HO,+0 2181013 0.00 230.6
HO, +OH=H,0 +0, 6.001013 0.00 0.0
H,O + 0, =HO, + OH 7.311014 0.00 303.53
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