7,006 research outputs found

    Power calculation for gravitational radiation: oversimplification and the importance of time scale

    Full text link
    A simplified formula for gravitational-radiation power is examined. It is shown to give completely erroneous answers in three situations, making it useless even for rough estimates. It is emphasized that short timescales, as well as fast speeds, make classical approximations to relativistic calculations untenable.Comment: Three pages, no figures, accepted for publication in Astronomische Nachrichte

    Mesoscopic continuous and discrete channels for quantum information transfer

    Full text link
    We study the possibility of realizing perfect quantum state transfer in mesoscopic devices. We discuss the case of the Fano-Anderson model extended to two impurities. For a channel with an infinite number of degrees of freedom, we obtain coherent behavior in the case of strong coupling or in weak coupling off-resonance. For a finite number of degrees of freedom, coherent behavior is associated to weak coupling and resonance conditions

    Droplet minimizers for the Gates-Lebowitz-Penrose free energy functional

    Full text link
    We study the structure of the constrained minimizers of the Gates-Lebowitz-Penrose free-energy functional FGLP(m){\mathcal F}_{\rm GLP}(m), non-local functional of a density field m(x)m(x), x∈TLx\in {\mathcal T}_L, a dd-dimensional torus of side length LL. At low temperatures, FGLP{\mathcal F}_{\rm GLP} is not convex, and has two distinct global minimizers, corresponding to two equilibrium states. Here we constrain the average density L^{-d}\int_{{\cal T}_L}m(x)\dd x to be a fixed value nn between the densities in the two equilibrium states, but close to the low density equilibrium value. In this case, a "droplet" of the high density phase may or may not form in a background of the low density phase, depending on the values nn and LL. We determine the critical density for droplet formation, and the nature of the droplet, as a function of nn and LL. The relation between the free energy and the large deviations functional for a particle model with long-range Kac potentials, proven in some cases, and expected to be true in general, then provides information on the structure of typical microscopic configurations of the Gibbs measure when the range of the Kac potential is large enough

    Combustion Characteristics of Hydrogen/Air Mixtures in a Plasma-Assisted Micro Combustor

    Get PDF
    This work performs an analysis of plasma-assisted non-premixed H2-air flames in Y-shaped micro combustors in the presence of field emission dielectric barrier discharge (FE-DBD) plasma actuators. The combustion, flow, and heat transfer characteristics are numerically investigated, and the effect of sinusoidal plasma discharges on combustion performance is examined at various equivalence ratios (φ). A coupled plasma and chemical kinetic model is implemented, using a zero-dimensional model based on the solution of the Boltzmann equation and the ZDPlasKin toolbox to compute net charges and radical generation rates. The estimated body forces, radical production rates, and power densities in the plasma regions are then coupled with hydrogen combustion in the microchannel. Plasma-assisted combustion reveals improvements in flame length and maximum gas temperature. The results demonstrate that FE-DBDs can enhance mixing and complete the combustion of unreacted fuel, preventing flame extinction. It is shown that even in cases of radical and thermal quenching, these plasma actuators are essential for stabilizing the flame

    A JKO splitting scheme for Kantorovich-Fisher-Rao gradient flows

    Full text link
    In this article we set up a splitting variant of the JKO scheme in order to handle gradient flows with respect to the Kantorovich-Fisher-Rao metric, recently introduced and defined on the space of positive Radon measure with varying masses. We perform successively a time step for the quadratic Wasserstein/Monge-Kantorovich distance, and then for the Hellinger/Fisher-Rao distance. Exploiting some inf-convolution structure of the metric we show convergence of the whole process for the standard class of energy functionals under suitable compactness assumptions, and investigate in details the case of internal energies. The interest is double: On the one hand we prove existence of weak solutions for a certain class of reaction-advection-diffusion equations, and on the other hand this process is constructive and well adapted to available numerical solvers.Comment: Final version, to appear in SIAM SIM

    A NEURAL NETWORK APPROACH TO ANALYSE CAVITATING FLOW REGIME IN AN INTERNAL ORIFICE

    Get PDF
    none3The identification of the water cavitation regime is an important issue in a wide range of machines, as hydraulic machines and internal combustion engine. In the present work several experiments on a water cavitating flow were conducted in order to investigate the influence of pressures and temperature on flow regime transition. In some cases, as the injection of hot fluid or the cryogenic cavitation, the thermal effects could be important. The cavitating flow pattern was analyzed by the images acquired by the high-speed camera and by the pressure signals. Four water cavitation regimes were individuated by the visualizations: no-cavitation, developing, super and jet cavitation. As by image analysis, also by the frequency analysis of the pressure signals, different flow behaviours were identified at the different operating conditions. A useful approach to predict and on-line monitoring the cavitating flow and to investigate the influence of the different parameters on the phenomenon is the application of Artificial Neural Network (ANN). In the present study a three-layer Elman neural network was designed, using as inputs the power spectral density distributions of dynamic differential pressure fluctuations, recorded downstream and upstream the restricted area of the orifice. Results show that the designed neural networks predict the cavitation patterns successfully comparing with the cavitation pattern by visual observation. The Artificial Neural Network underlines also the impact that each input has in the training process, so it is possible to identify the frequency ranges that more influence the different cavitation regimes and the impact of the temperature. A theoretical analysis has been also performed to justify the results of the experimental observations. In this approach the nonlinear dynamics of the bubbles growth have been used on an homogenous vapor - liquid mixture model, so to couple the effects of the internal dynamic bubble with the other flow parameters.Paper ESDA2012-82205M.G. De Giorgi; D. Bello; A.FicarellaDE GIORGI, Maria Grazia; Bello, Daniela; Ficarella, Antoni

    Double dot chain as a macroscopic quantum bit

    Full text link
    We consider an array of N quantum dot pairs interacting via Coulomb interaction between adjacent dots and hopping inside each pair. We show that at the first order in the ratio of hopping and interaction amplitudes, the array maps in an effective two level system with energy separation becoming exponentially small in the macroscopic (large N) limit. Decoherence at zero temperature is studied in the limit of weak coupling with phonons. In this case the macroscopic limit is robust with respect to decoherence. Some possible applications in quantum information processing are discussed.Comment: Phys. Rev. A (in press

    Mitochondrial DNA in the sea urchin Arbacia lixula: evolutionary inferences from nucleotide sequence analysis.

    Get PDF
    From the stirodont Arbacia lixula we determined the sequence of 5,127 nucleotides of mitochondrial DNA (mtDNA) encompassing 18 tRNAs, two complete coding genes, parts of three other coding genes, and part of the 12S ribosomal RNA (rRNA). The sequence confirms that the organization of mtDNA is conserved within echinoids. Furthermore, it underlines the following peculiar features of sea urchin mtDNA: the clustering of tRNAs, the short noncoding regulatory sequence, and the separation by the ND1 and ND2 genes of the two rRNA genes. Comparison with the orthologous sequences from the camarodont species Paracentrotus lividus and Strongylocentrotus purpuratus revealed that (1) echinoids have an extra piece on the amino terminus of the ND5 gene that is probably the remnant of an old leucine tRNA gene; (2) third-position codon nucleotide usage has diverged between A. lixula and the camarodont species to a significant extent, implying different directional mutational pressures; and (3) the stirodont-camarodont divergence occurred twice as long ago as did the P. lividus-S. purpuratus divergence
    • 

    corecore