1,608 research outputs found

    The QCD confinement transition: hadron formation

    Full text link
    We review the foundations and the applications of the statistical and the quark recombination model as hadronization models.Comment: 45 pages, 16 figures, accepted for publication in Landolt-Boernstein Volume 1-23

    Universal behavior of baryons and mesons' transverse momentum distributions in the framework of percolation of strings

    Full text link
    In the framework of percolation of strings, we present predictions for the RAAR_{AA} and RCPR_{CP} for mesons and baryons and for pˉ/π0\bar{p}/\pi^{0} ratios at LHC energies.Comment: Presented at "Heavy Ion Collisions at the LHC: last call for predictions", Geneva Switzerland, May 14th-June 8t

    PHENIX Highlights

    Full text link
    Recent highlights of measurements by the PHENIX experiment at RHIC are presented.Comment: 8 pages, 9 figures. Talk at Quark Matter 200

    Evolution of mechanism of parton energy loss with transverse momentum at RHIC and LHC in relativistic collision of heavy nuclei

    Full text link
    We analyze the suppression of particle production at large transverse momenta in (050-5% most) central collisions of gold nuclei at sNN=\sqrt{s_\textrm{NN}}= 200 GeV and lead nuclei at sNN=\sqrt{s_{\textrm{NN}}}= 2.76 TeV. Full next-to-leading order radiative corrections at O(αs3){\cal{O}}(\alpha_s^3), and nuclear effects like shadowing and parton energy loss are included. The parton energy loss is implemented in a simple multiple scattering model, where the partons lose an energy ϵ=λ×dE/dx\epsilon=\lambda \times dE/dx per collision, where λ\lambda is their mean free path. We take ϵ=κE\epsilon=\kappa E for a treatment which is suggestive of the Bethe Heitler (BH) mechanism of incoherent scatterings, ϵ=αE\epsilon = \sqrt{\alpha E} for LPM mechanism, and ϵ=\epsilon= constant for a mechanism which suggests that the rate of energy loss (dE/dxdE/dx) of the partons is proportional to total path length (LL) of the parton in the plasma, as the formation time of the radiated gluon becomes much larger than LL. We find that while the BH mechanism describes the nuclear modification factor RAAR_{\textrm{AA}} for pTp_T \leq 5 GeV/cc (especially at RHIC energy), the LPM and more so the constant dE/dxdE/dx mechanism provides a good description at larger pTp_T. This confirms the earlier expectation that the energy loss mechanism for partons changes from BH to LPM for pTλp_T \ge \lambda , where λ\lambda \approx 1 fm and \approx 1 GeV2^2 is the average transverse kick-squared received by the parton per collision. The energy loss per collision at the sNN\sqrt{s_\textrm{NN}} =2.76 TeV is found to be about twice of that at 0.2 TeV.Comment: Discussion expanded, additional references added, 14 pages, 6 figures, To appear in Journal of Physics

    Hard spectra and QCD matter: experimental review

    Full text link
    The most significant experimental results on hadron spectra at large transverse momentum available at the time of Quark Matter 2004 conference are reviewed. Emphasis is put on those measurements that provide insights on the properties of the QCD media, ``Quark Gluon Plasma'' and ``Color Glass Condensate'', expected to be present in nucleus-nucleus collisions at collider energies.Comment: 2 plots updated. Minor changes in tex

    Paratexts in (social–political) transition

    Full text link

    A computational study on altered theta-gamma coupling during learning and phase coding

    Get PDF
    There is considerable interest in the role of coupling between theta and gamma oscillations in the brain in the context of learning and memory. Here we have used a neural network model which is capable of producing coupling of theta phase to gamma amplitude firstly to explore its ability to reproduce reported learning changes and secondly to memory-span and phase coding effects. The spiking neural network incorporates two kinetically different GABAA receptor-mediated currents to generate both theta and gamma rhythms and we have found that by selective alteration of both NMDA receptors and GABAA,slow receptors it can reproduce learning-related changes in the strength of coupling between theta and gamma either with or without coincident changes in theta amplitude. When the model was used to explore the relationship between theta and gamma oscillations, working memory capacity and phase coding it showed that the potential storage capacity of short term memories, in terms of nested gamma-subcycles, coincides with the maximal theta power. Increasing theta power is also related to the precision of theta phase which functions as a potential timing clock for neuronal firing in the cortex or hippocampus

    THE COST STRUCTURE OF MICROFINANCE INSTITUTIONS IN EASTERN EUROPE AND CENTRAL ASIA

    Full text link
    Microfinance institutions are important, particularly in developing countries, because they expand the frontier of financial intermediation by providing loans to those traditionally excluded from formal financial markets. This paper presents the first systematic statistical examination of the performance of MFIs operating in Eastern Europe and Central Asia. A cost function is estimated for MFIs in the region from 1999-2004. First, the presence of subsidies is found to be associated with higher MFI costs. When output is measured as the number of loans made, we find that MFIs become more efficient over time and that MFIs involved in the provision of group loans and loans to women have lower costs. However, when output is measured as volume of loans rather than their number, this last finding is reversed. This may be due to the fact that such loans are smaller in size; thus for a given volume more loans must be made.http://deepblue.lib.umich.edu/bitstream/2027.42/40195/3/wp809.pd

    Heterogeneity in Multiple Sclerosis: Scratching the Surface of a Complex Disease

    Get PDF
    Multiple Sclerosis (MS) is the most common demyelinating disease of the central nervous system. Although the etiology and the pathogenesis of MS has been extensively investigated, no single pathway, reliable biomarker, diagnostic test, or specific treatment have yet been identified for all MS patients. One of the reasons behind this failure is likely to be the wide heterogeneity observed within the MS population. The clinical course of MS is highly variable and includes several subcategories and variants. Moreover, apart from the well-established association with the HLA-class II DRB1*15:01 allele, other genetic variants have been shown to vary significantly across different populations and individuals. Finally both pathological and immunological studies suggest that different pathways may be active in different MS patients. We conclude that these “MS subtypes” should still be considered as part of the same disease but hypothesize that spatiotemporal effects of genetic and environmental agents differentially influence MS course. These considerations are extremely relevant, as outcome prediction and personalised medicine represent the central aim of modern research
    corecore