337 research outputs found

    Is the droplet theory for the Ising spin glass inconsistent with replica field theory?

    Full text link
    Symmetry arguments are used to derive a set of exact identities between irreducible vertex functions for the replica symmetric field theory of the Ising spin glass in zero magnetic field. Their range of applicability spans from mean field to short ranged systems in physical dimensions. The replica symmetric theory is unstable for d>8, just like in mean field theory. For 6<d<8 and d<6 the resummation of an infinite number of terms is necessary to settle the problem. When d<8, these Ward-like identities must be used to distinguish an Almeida-Thouless line from the replica symmetric droplet phase.Comment: 4 pages. Accepted for publication in J.Phys.A. This is the accepted version with the following minor changes: one extra sentence in the abstract; footnote 2 slightly extended; last paragraph somewhat reformulate

    Finite dimensional corrections to mean field in a short-range p-spin glassy model

    Full text link
    In this work we discuss a short range version of the pp-spin model. The model is provided with a parameter that allows to control the crossover with the mean field behaviour. We detect a discrepancy between the perturbative approach and numerical simulation. We attribute it to non-perturbative effects due to the finite probability that each particular realization of the disorder allows for the formation of regions where the system is less frustrated and locally freezes at a higher temperature.Comment: 18 pages, 5 figures, submitted to Phys Rev

    Statistical mechanics of the random K-SAT model

    Full text link
    The Random K-Satisfiability Problem, consisting in verifying the existence of an assignment of N Boolean variables that satisfy a set of M=alpha N random logical clauses containing K variables each, is studied using the replica symmetric framework of diluted disordered systems. We present an exact iterative scheme for the replica symmetric functional order parameter together for the different cases of interest K=2, K>= 3 and K>>1. The calculation of the number of solutions, which allowed us [Phys. Rev. Lett. 76, 3881 (1996)] to predict a first order jump at the threshold where the Boolean expressions become unsatisfiable with probability one, is thoroughly displayed. In the case K=2, the (rigorously known) critical value (alpha=1) of the number of clauses per Boolean variable is recovered while for K>=3 we show that the system exhibits a replica symmetry breaking transition. The annealed approximation is proven to be exact for large K.Comment: 34 pages + 1 table + 8 fig., submitted to Phys. Rev. E, new section added and references update

    Stability of self-consistent solutions for the Hubbard model at intermediate and strong coupling

    Full text link
    We present a general framework how to investigate stability of solutions within a single self-consistent renormalization scheme being a parquet-type extension of the Baym-Kadanoff construction of conserving approximations. To obtain a consistent description of one- and two-particle quantities, needed for the stability analysis, we impose equations of motion on the one- as well on the two-particle Green functions simultaneously and introduce approximations in their input, the completely irreducible two-particle vertex. Thereby we do not loose singularities caused by multiple two-particle scatterings. We find a complete set of stability criteria and show that each instability, singularity in a two-particle function, is connected with a symmetry-breaking order parameter, either of density type or anomalous. We explicitly study the Hubbard model at intermediate coupling and demonstrate that approximations with static vertices get unstable before a long-range order or a metal-insulator transition can be reached. We use the parquet approximation and turn it to a workable scheme with dynamical vertex corrections. We derive a qualitatively new theory with two-particle self-consistence, the complexity of which is comparable with FLEX-type approximations. We show that it is the simplest consistent and stable theory being able to describe qualitatively correctly quantum critical points and the transition from weak to strong coupling in correlated electron systems.Comment: REVTeX, 26 pages, 12 PS figure

    Parquet approach to nonlocal vertex functions and electrical conductivity of disordered electrons

    Full text link
    A diagrammatic technique for two-particle vertex functions is used to describe systematically the influence of spatial quantum coherence and backscattering effects on transport properties of noninteracting electrons in a random potential. In analogy with many-body theory we construct parquet equations for topologically distinct {\em nonlocal} irreducible vertex functions into which the {\em local} one-particle propagator and two-particle vertex of the coherent-potential approximation (CPA) enter as input. To complete the two-particle parquet equations we use an integral form of the Ward identity and determine the one-particle self-energy from the known irreducible vertex. In this way a conserving approximation with (Herglotz) analytic averaged Green functions is obtained. We use the limit of high spatial dimensions to demonstrate how nonlocal corrections to the d=d=\infty (CPA) solution emerge. The general parquet construction is applied to the calculation of vertex corrections to the electrical conductivity. With the aid of the high-dimensional asymptotics of the nonlocal irreducible vertex in the electron-hole scattering channel we derive a mean-field approximation for the conductivity with vertex corrections. The impact of vertex corrections onto the electronic transport is assessed quantitatively within the proposed mean-field description on a binary alloy.Comment: REVTeX 19 pages, 9 EPS diagrams, 6 PS figure

    Large negative velocity gradients in Burgers turbulence

    Full text link
    We consider 1D Burgers equation driven by large-scale white-in-time random force. The tails of the velocity gradients probability distribution function (PDF) are analyzed by saddle-point approximation in the path integral describing the velocity statistics. The structure of the saddle-point (instanton), that is velocity field configuration realizing the maximum of probability, is studied numerically in details. The numerical results allow us to find analytical solution for the long-time part of the instanton. Its careful analysis confirms the result of [Phys. Rev. Lett. 78 (8) 1452 (1997) [chao-dyn/9609005]] based on short-time estimations that the left tail of PDF has the form ln P(u_x) \propto -|u_x|^(3/2).Comment: 10 pages, RevTeX, 10 figure

    Static chaos and scaling behaviour in the spin-glass phase

    Full text link
    We discuss the problem of static chaos in spin glasses. In the case of magnetic field perturbations, we propose a scaling theory for the spin-glass phase. Using the mean-field approach we argue that some pure states are suppressed by the magnetic field and their free energy cost is determined by the finite-temperature fixed point exponents. In this framework, numerical results suggest that mean-field chaos exponents are probably exact in finite dimensions. If we use the droplet approach, numerical results suggest that the zero-temperature fixed point exponent θ\theta is very close to d32\frac{d-3}{2}. In both approaches d=3d=3 is the lower critical dimension in agreement with recent numerical simulations.Comment: 28 pages + 6 figures, LateX, figures uuencoded at the end of fil

    Viscous Instanton for Burgers' Turbulence

    Full text link
    We consider the tails of probability density functions (PDF) for different characteristics of velocity that satisfies Burgers equation driven by a large-scale force. The saddle-point approximation is employed in the path integral so that the calculation of the PDF tails boils down to finding the special field-force configuration (instanton) that realizes the extremum of probability. We calculate high moments of the velocity gradient xu\partial_xu and find out that they correspond to the PDF with ln[P(xu)](xu/Re)3/2\ln[{\cal P}(\partial_xu)]\propto-(-\partial_xu/{\rm Re})^{3/2} where Re{\rm Re} is the Reynolds number. That stretched exponential form is valid for negative xu\partial_xu with the modulus much larger than its root-mean-square (rms) value. The respective tail of PDF for negative velocity differences ww is steeper than Gaussian, lnP(w)(w/urms)3\ln{\cal P}(w)\sim-(w/u_{\rm rms})^3, as well as single-point velocity PDF lnP(u)(u/urms)3\ln{\cal P}(u)\sim-(|u|/u_{\rm rms})^3. For high velocity derivatives u(k)=xkuu^{(k)}=\partial_x^ku, the general formula is found: lnP(u(k))(u(k)/Rek)3/(k+1)\ln{\cal P}(|u^{(k)}|)\propto -(|u^{(k)}|/{\rm Re}^k)^{3/(k+1)}.Comment: 15 pages, RevTeX 3.

    Replica field theory and renormalization group for the Ising spin glass in an external magnetic field

    Full text link
    We use the generic replica symmetric cubic field-theory to study the transition of short range Ising spin glasses in a magnetic field around the upper critical dimension, d=6. A novel fixed-point is found, in addition to the well-known zero magnetic field fixed-point, from the application of the renormalization group. In the spin glass limit, n going to 0, this fixed-point governs the critical behaviour of a class of systems characterised by a single cubic interaction parameter. For this universality class, the spin glass susceptibility diverges at criticality, whereas the longitudinal mode remains massive. The third mode, the so-called anomalous one, however, behaves unusually, having a jump at criticality. The physical consequences of this unusual behaviour are discussed, and a comparison with the conventional de Almeida-Thouless scenario presented.Comment: 5 pages written in revtex4. Accepted for publication in Phys. Rev. Let

    HTL Resummation of the Thermodynamic Potential

    Get PDF
    Starting from the Phi-derivable approximation scheme at leading-loop order, the thermodynamical potential in a hot scalar theory, as well as in QED and QCD, is expressed in terms of hard thermal loop propagators. This nonperturbative approach is consistent with the leading-order perturbative results, ultraviolet finite, and, for gauge theories, explicitly gauge-invariant. For hot QCD it is argued that the resummed approximation is applicable in the large-coupling regime, down to almost twice the transition temperature.Comment: minor changes, to appear in PRD, 27 pages, 15 eps figure
    corecore