857 research outputs found
On infrared divergences in spin glasses
By studying the structure of infrared divergences in a toy propagator in the
replica approach to the Ising spin glass below , we suggest a possible
cancellation mechanism which could decrease the degree of singularity in the
loop expansion.Comment: 13 pages, Latex , revised versio
Stability of the Mezard-Parisi solution for random manifolds
The eigenvalues of the Hessian associated with random manifolds are
constructed for the general case of steps of replica symmetry breaking. For
the Parisi limit (continuum replica symmetry breaking) which is
relevant for the manifold dimension , they are shown to be non negative.Comment: LaTeX, 15 page
Replica Fourier Transforms on Ultrametric Trees, and Block-Diagonalizing Multi-Replica Matrices
The analysis of objects living on ultrametric trees, in particular the
block-diagonalization of 4-replica matrices ,
is shown to be dramatically simplified through the introduction of properly
chosen operations on those objects. These are the Replica Fourier Transforms on
ultrametric trees. Those transformations are defined and used in the present
work.Comment: Latex file, 14 page
On the structure of correlations in the three dimensional spin glasses
We investigate the low temperature phase of three-dimensional
Edwards-Anderson model with Bernoulli random couplings. We show that at a fixed
value of the overlap the model fulfills the clustering property: the
connected correlation functions between two local overlaps decay as a power
whose exponent is independent of for all . Our findings
are in agreement with the RSB theory and show that the overlap is a good order
parameter.Comment: 5 pages, 5 figure
Zero-Temperature Limit of the SUSY-breaking Complexity in Diluted Spin-Glass Models
We study the SUSY-breaking complexity of the Bethe Lattice Spin-Glass in the
zero temperature limit. We consider both the Gaussian and the bimodal
distribution of the coupling constants. For the SUSY breaking
theory yields fields distributions that concentrate on integer values at low
temperatures, at variance with the unbroken SUSY theory. This concentration
takes place both in the quenched as well as in the simpler annealed
formulation.Comment: 4 pages, 2 figure
Spontaneous versus explicit replica symmetry breaking in the theory of disordered systems
We investigate the relation between spontaneous and explicit replica symmetry
breaking in the theory of disordered systems. On general ground, we prove the
equivalence between the replicon operator associated with the stability of the
replica symmetric solution in the standard replica scheme and the operator
signaling a breakdown of the solution with analytic field dependence in a
scheme in which replica symmetry is explicitly broken by applied sources. This
opens the possibility to study, via the recently developed functional
renormalization group, unresolved questions related to spontaneous replica
symmetry breaking and spin-glass behavior in finite-dimensional disordered
systems.Comment: 16 page
Finite dimensional corrections to mean field in a short-range p-spin glassy model
In this work we discuss a short range version of the -spin model. The
model is provided with a parameter that allows to control the crossover with
the mean field behaviour. We detect a discrepancy between the perturbative
approach and numerical simulation. We attribute it to non-perturbative effects
due to the finite probability that each particular realization of the disorder
allows for the formation of regions where the system is less frustrated and
locally freezes at a higher temperature.Comment: 18 pages, 5 figures, submitted to Phys Rev
Generalised Bose-Einstein phase transition in large- component spin glasses
It is proposed to understand finite dimensional spin glasses using a
expansion, where is the number of spin components. It is shown that this
approach predicts a replica symmetric state in finite dimensions. The point
about which the expansion is made, the infinite- limit, has been studied in
the mean-field limit in detail and has a very unusual phase transition, rather
similar to a Bose-Einstein phase transition but with macroscopically
occupied low-lying states.Comment: 4 pages (plus a few lines), 3 figures. v2: minor error corrected. v3:
numerics supplemented by analytical arguments, references added, figure of
density of states adde
Symmetry breaking via fermion 4-point functions
We construct the effective action and gap equations for nonperturbative
fermion 4-point functions. Our results apply to situations in which fermion
masses can be ignored, which is the case for theories of strong flavor
interactions involving standard quarks and leptons above the electroweak scale.
The structure of the gap equations is different from what a naive
generalization of the 2-point case would suggest, and we find for example that
gauge exchanges are insufficient to generate nonperturbative 4-point functions
when the number of colors is large.Comment: 36 pages, uses Revtex and eps files for figure
- …