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We investigate the low temperature phase of the three dimensional Edward-Anderson model with

Bernoulli random couplings. We show that, at a fixed value Q of the overlap, the model fulfills the

clustering property: The connected correlation functions between two local overlaps have power law

decay. Our findings are in agreement with the replica symmetry breaking theory and show that the overlap

is a good order parameter.

DOI: 10.1103/PhysRevLett.103.017201 PACS numbers: 75.10.Nr, 75.10.Hk, 75.50.Lk

Spin glasses have unusual statistical properties. In mean
field theory, there are intensive quantities that fluctuate also
in the thermodynamic limit. This is the effect of the coex-
istence of many equilibrium states. The correlation func-
tions inside a given state should have a power law
behavior: Below the critical temperature, spin glasses are
always in a critical state (many glassy systems should share
this behavior). These predictions of mean field theory have
never been studied in detail, apart from Ref. [1]; the aim of
this Letter is to address this point in a careful way.

In order to better characterize the behavior of spin
glasses, it is convenient to consider two clones of the
same system: �ðiÞ and �ðiÞ, i being the point of the lattice.
The two clones share the same HamiltonianHJ; the label J
indicates the set of random coupling constants.

Let us define the local overlap qðiÞ � �ðiÞ�ðiÞ and the
global overlap q � V�1

P
iqðiÞ, V being the total volume.

For the three dimensional Edwards-Anderson (EA) model
[2] at zero magnetic field, all simulations confirm that the
probability distribution of PJðqÞ is nontrivial in the ther-
modynamic limit; it changes from system to system, its
average over the disorder, that we denote as PðqÞ �
E½PJðqÞ�, is nontrivial, and it has a support in the region
from �qEA to qEA, qEA being the overlap of two generic
configurations belonging to the same state [3]. It is usually
assumed that the function PðqÞ has in the infinite volume
limit a delta function singularity at q ¼ qEA that appears as
a peak in finite volume systems. In the presence of multiple
states, the most straightforward approach consists in iden-
tifying the clustering states (i.e., those where the connected
correlation functions go to zero at large distance) and to
introduce an order parameter that identifies the different
states. This task is extremely difficult in a random system
where the structure of the states depends on the instance of
the system. However, the replica theory is able to make
predictions without finding out explicitly the set of states.
At this end, the introduction of the two clones is crucial: If
the global overlap q has a preassigned value, the correla-

tions of local overlaps qðiÞ must go to zero at large dis-
tances. In other words, q is a good order parameter.
For each realization of the system, we consider two

clones. The observables are the local overlaps qðiÞ and
their correlations. We define hOiJQ as the expectation value

of the observable O in the J-dependent Gibbs ensemble
restricted to those configurations of the two clones that
have global overlap q ¼ Q. We define the average expec-
tation values hOiQ as the weighted average over the sys-

tems of restricted expectation values:

hOiQ ¼ E½PJðQÞhOiJQ�
E½PJðQÞ� : (1)

In this Letter, we bring evidence for a main prediction of
the replica symmetry breaking theory [4]: The
Q-dependent connected correlation functions go to zero
when computed in the ensemble h�iQ; i.e., the states h�iQ
are clustering. The procedure is very similar to the one
used in ferromagnetic Ising models (i.e., we consider aver-
ages with positive, or negative, total magnetization). The
overlap constraint state would be not clustering if the
equilibrium state were locally unique (apart from a global
change of signs) [5]. Spin glasses are the only known
example of a system where the clustering states are labeled
by a continuously changing order parameter in the absence
of a continuous symmetry (e.g., rotations).
This clustering property has far-reaching consequences:

For example, the probability distribution PðqÞWQ of the

window overlaps [6], i.e., the average overlap over a region
of size W, becomes a delta function �ðQ� qÞ in the
infinite volume limit.
We recall some results for the connected correlation

functions in the case of short range Ising spin glasses:

GðxjQÞ¼ hqðxÞqð0ÞiQ; CðxjQÞ¼GðxjQÞ�Q2; (2)

and their Fourier transforms ~CðkjQÞ. They are obtained by
starting from mean field theory and computing the first
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nontrivial term [7]: They are supposed to be exact in
dimensions D greater than 6. Neglecting logarithms, we
have in the small k region

~CðkjQÞ / k�4 for Q ¼ 0;

~CðkjQÞ / k�3 for 0<Q< qEA;

~CðkjQÞ / k�2 for Q ¼ qEA;

~CðkjQÞ / ðk2 þ �ðQÞ�2Þ�1 for Q> qEA:

(3)

The reader may be surprised to find a result forQ> qEA
because the function PðqÞ is zero in this region in the
infinite volume limit. However, for finite systems, PðqÞ is
different from zero for any q, albeit it is very small [8,9] in
the region q > qEA. For Q> qEA, an analytic computation

of the function ~CðkjQÞ has not yet been done; however, it is
reasonable that the leading singularity near to k ¼ 0 in the
complex plane is a single pole, leading to an exponentially
decaying correlation function.

When the dimensions become smaller than 6, we can
rely on the perturbative expansion in � ¼ 6�D [10]. The
predictions atQ ¼ qEA should not change, and the form of
the k ¼ 0 singularity atQ ¼ qEA (i.e., when the two clones
belong to the same state) remains k�2 as for Goldstone
bosons. On the contrary, the k ¼ 0 singularities atQ< qEA
should change and

~CðkjQÞ / k�~�ðQÞ for 0 � Q< qEA: (4)

These perturbative results are the only information we have
on the form of ~�ðQÞ. In the simplest scenario, ~�ðQÞ is
discontinuous at Q ¼ 0 and constant in the region 0<
Q< qEA. There is no strong theoretical evidence for the
constancy of ~�ðQÞ in the region 0<Q< qEA, apart from
generic universality arguments. The discontinuity atQ ¼ 0
could persist in dimensions not too smaller than 6 and
disappear at lower dimensions, as supported by our data
in D ¼ 3. In the three dimensional case in configuration
space, we should have

CðxjQÞ / x��ðQÞ for 0 � Q � qEA; (5)

with �ðqEAÞ ¼ 1. ForQ> qEA the correlation should go to
zero faster than a power: We tentatively assume that

CðxjQÞ / x�1 exp½�x=�ðQÞ� for qEA <Q: (6)

In this Letter, wewill numerically study the properties of
the two overlap connected correlation functions in the
three dimensional EA model. The Hamiltonian of the EA
model [2] is given byH� ¼ �P

ji�jj¼1Ji;j�i�j, with Ji;j ¼
�1 (symmetrically distributed) and Ising spins �i ¼ �1.
We have studied cubic lattice systems with periodic bound-
ary conditions of side L for L ¼ 4, 6, 8, 10, 12, 16, and 20.
The simulation parameters are the same as used in
Ref. [11]. We present the results only at temperature T ¼
0:7, while the critical temperature is about T ¼ 1:11.

We have first classified the configurations created during
the numerical simulations according to the value of the
global overlap q. Since the properties of the configurations

are invariant under the symmetry (q ! �q), we have
classified the configurations into 20 equidistant bins in
q2: For example, the first bin contains all of the configu-
rations where 0< q2 < 1=20. In this way, we compute the
correlations CðxjQÞ. We have measured the correlations
only along the axes of the lattice: x is an integer restricted
to the range 0; L=2. As a control we have done the same
operation with 10 bins obtaining similar results.
We have first verified that the connected correlations

vanish for large systems. At this end, in Fig. 1, we have
plotted for L ¼ 20 (our largest system) the correlation
Gð10jQÞ versus the average of Q2 in the bin. The two
quantities coincide. The data show strong evidence for
the vanishing of the connected two-point correlation func-
tion. The prediction of the replica theory is GðL=2jQÞ ¼
Q2, neglecting corrections going to zero with the volume.
Further information can be extracted from the data. The

analysis of the data should be done in a different way in the
two regions 0 � Q2 � q2EA and q2EA <Q2 as far as two
different behavior are expected. In our case q2EA can be
estimated to be around 0.4.
In the region 0 � Q2 � q2EA, the power law decrease (5)

of the correlation is expected. To test this hypothesis [12],

we define for each L the quantities �ðsÞ
L ðQÞ:

�ðsÞ
L ðQÞ ¼ XL=2

x¼1

xsCLðxjQÞ; (7)

where CLðxjQÞ is the connected correlation function in a
system of size L, i.e., GLðxjQÞ �Q2 [in order to decrease
the statistical errors we have used the asymptotically
equivalent definition GLðxjQÞ ¼ GLðxjQÞ �GLðL=2jQÞ].
For large L, �ðsÞ

L ðQÞ should behave as Lsþ1��ðQÞ. We have
evaluated the previous quantity [more precisely, we have
used at the place of CLðxjQÞ its proxy CLðxjQÞ �
CLðL=2jQÞ that has smaller statistical errors] for

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

G
(1

0|
Q

)

Q2

y=0.99x+0.004

FIG. 1 (color online). The correlation function at distance 10
Gð10jQÞ averaged in 20 bins (round points) and in 10 bins
(crosses) of Q2 versus the average of Q2 inside the bin. The
data are for a system of size 20, and the straight line is the best fit
to the data.
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s ¼ 1; 2. In the region Q2 < 0:4 we have found that the

ratio �ð2Þ
L ðQÞ=�ð1Þ

L ðQÞ is well linear in L. Here the data for

�ðsÞ
L ðQÞ can be well fitted as a power of L, and the expo-

nents �ðQÞ computed using s ¼ 1 and s ¼ 2 coincide
within their errors. These results are no more true in the
region 0:5<Q2 indicating that a power law decrease of the
correlation is not valid there. The exponents we find with
this method are shown in Fig. 2.

In order to check these results for �ðQÞ, we have used a
different approach. In the large volume limit, the correla-

tion function should satisfy the scaling L�ðQÞCLðxjQÞ ¼
fðx=LÞ. The value of �ðQÞ can be found by imposing this
scaling. At this end for each value of Q we have plotted

L�ðQÞCLðxjQÞ and found the value of �ðQÞ for which we
get the best collapse. The result of the collapse is shown in
Fig. 3 for Q around zero, where for graphical purposes we

have plotted L�ðQÞCLðxjQÞgðx=LÞ versus sinð�x=LÞ,
where the function g has been added to compress the

vertical scale [we find it convenient to use gðzÞ ¼ ½1=zþ
1=ð1� zÞ���ðQÞ, following Ref. [13]]. In the left panel we
show the collapse using all points with x � 1, and in the
right panel we exclude the correlations at distance x ¼ 1.
The corresponding values of the exponent are shown in
Fig. 2, and they agree with the ones coming from the
previous analysis in the region of Q2 � 0:4.

The exponent �ðQÞ is a smooth function of Q2 which
goes to 1 near Q2 ¼ 0:4 in very good agreement with the
theoretical expectations. We do not see any sign of a
discontinuity atQ ¼ 0, and this is confirmed by an analysis
with a high number of bins (e.g., 100). However, it is clear
that for a lattice of this size value we cannot expect to have
a very high resolution on Q, and we should look to much
larger lattices in order to see if there is a sign of a building
up of a discontinuity and of a plateau. The value of the
exponent that we find at Q ¼ 0 is consistent with the value

0.4 found from the dynamics [12] and with the value 0.4
found with the analysis of the ground states with different
boundary conditions [13].
From the previous analysis it is not clear if the exponent

�ðQÞ has a weak dependence on Q or if the weak depen-
dence onQ is just a preasymptotic effect. In order to clarify
the situation, it is better to look to the connected correla-
tions themselves. In Fig. 4, we display the connected
correlation CLðxjQÞ as a function of Q2 for x ¼ 6; 7; 8; 9
at L ¼ 20, our largest lattice (for the result at x ¼ 1, see
[14]). We can fit the correlations at fixed L (e.g., L ¼ 20)
for large x as

CLðxjQÞ¼Aðx;LÞ½Q2�Bðx;LÞ2�; Q2<Bðx;LÞ2; (8)

while CLðxjQÞ is very near to zero for Q2 >Bðx; LÞ2. The
goodness of these fits improves with the distance (similar
results are valid at smaller L). The value of Bðx; LÞ2 is near
to q2EA, and it is slightly decreasing with L. The validity of
the fits (8) for large L would imply that in the region jqj<
qEA the large distance decrease of the correlation function
should be of the form AðxÞðQ2 � q2EAÞ, and therefore, by
comparison with formula (5), the exponent �ðQÞ should
not depend on Q.
However, near q ¼ qEA we should have a real crossover

region. In Fig. 5, we show CLðxjQÞgðxÞ at L ¼ 20 for
0:475 � Q2 � 0:625 versus y � ½1=xþ 1=ð2L� xÞ��1

[we use the variable y ¼ x½1�Oðx=LÞ� to take care of
finite volume effects] with gðxÞ ¼ ð1� 2x=LÞ�2. It seems
that the data at Q2 > 0:475 decrease faster than a power at
large distances and that the data at Q2 ¼ 0:475 are com-
patible with a power with exponent �1. It is difficult to
extract precise quantitative conclusions, without a careful
analysis of the L dependence. We hope that this will be
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FIG. 2 (color online). Circles are the value of the exponent
�ðQÞ by fitting �ðsÞðQÞL as a power of L: For each value of Q2,
we show two points corresponding to s ¼ 1 and to s ¼ 2.
Squares represent the same quantity �ðQÞ as obtained through
the scaling approach visible in Fig. 3.
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FIG. 3 (color online). The quantity L�ðQÞCLðxjQÞgðx=LÞ with
gðzÞ ¼ ½1=zþ 1=ð1� zÞ���ðQÞ versus sinð�x=LÞ for the set of
data in the first bin Q2 < 0:5, using the best value of �ðQÞ. The
left panel displays the data for all of the correlations at distances
x � 1 [the corresponding value of �ðQÞ being 0.50]; in the right
panel we have only the data with x � 2 [the corresponding value
of �ðQÞ being 0.54].
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done when the data on the correlation functions on larger
lattices are available.

In the region q2EA � Q2 our task is different: The corre-
lations are short range, and we would like to compute if
possible the correlation length. At this end we have fitted
the data as

CLðxjQÞ ¼ a

xþ 1
exp½�x=�LðQÞ�

þ ðx ! L� xÞ þ const: (9)

The choice of the fit is somewhat arbitrary; however, we
use it only to check that the correlation length diverges at
qEA and that near qEA is well fitted by a 1=x power. The fits
are good, but this may not imply the correctness of the
functional form in Eq. (9). We find that far from Q ¼ 0:5

the correlation length is independent of L (it is quite small).
We have tried to collapse the data for L > 8 in the form

�LðQÞ ¼ Lf½ðQ2 � q2EAÞL1=	�. A reasonable collapse has
been obtained; however, the q2EA is quite small (i.e., 0.25):
It is quite possible that there are finite volume effects, and
thus different ways to evaluate qEA should give different
results on a finite lattice that would converge to the same
value in the infinite volume limit.
In conclusion, the global overlap for a two-clone system

is a well defined order parameter such that in the appro-
priate restricted ensemble the two-point connected corre-
lation function decays at large distance. The connected
correlations decay as a power whose exponent seems to
be independent from Q for 0 � jQj< qEA: The value of
the exponent is in agreement with the results obtained in a
different context at Q ¼ 0. Moreover, the connected two-
point correlation function at Q ¼ qEA decays like 1=x in
agreement with the detailed predictions coming from rep-
lica theory.
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