3,353 research outputs found

    Graphene-based dental adhesive with anti-biofilm activity

    Get PDF
    BACKGROUND: Secondary caries are considered the main cause of dental restoration failure. In this context, anti-biofilm and bactericidal properties are desired in dental materials against pathogens such as Streptococcus mutans. To this purpose, graphene based materials can be used as fillers of polymer dental adhesives. In this work, we investigated the possibility to use as filler of dental adhesives, graphene nanoplatelets (GNP), a non toxic hydrophobic nanomaterial with antimicrobial and anti-biofilm properties. RESULTS: Graphene nanoplatelets have been produced starting from graphite intercalated compounds through a process consisting of thermal expansion and liquid exfoliation. Then, a dental adhesive filled with GNPs at different volume fractions has been produced through a solvent evaporation method. The rheological properties of the new experimental adhesives have been assessed experimentally. The adhesive properties have been tested using microtensile bond strength measurements (µ-TBS). Biocidal activity has been studied using the colony forming units count (CFU) method. The anti-biofilm properties have been demonstrated through FE-SEM imaging of the biofilm development after 3 and 24 h of growth. CONCLUSIONS: A significantly lower vitality of S. mutans cells has been demonstrated when in contact with the GNP filled dental adhesives. Biofilm growth on adhesive-covered dentine tissues demonstrated anti-adhesion properties of the produced materials. µ-TBS results demonstrated no significant difference in µ-TBS between the experimental and the control adhesive. The rheology tests highlighted the necessity to avoid low shear rate regimes during adhesive processing and application in clinical protocol, and confirmed that the adhesive containing the 0.2%wt of GNPs possess mechanical properties comparable with the ones of the control adhesive

    Radar/electro-optical data fusion for non-cooperative UAS sense and avoid

    Get PDF
    Abstract This paper focuses on hardware/software implementation and flight results relevant to a multi-sensor obstacle detection and tracking system based on radar/electro-optical (EO) data fusion. The sensing system was installed onboard an optionally piloted very light aircraft (VLA). Test flights with a single intruder plane of the same class were carried out to evaluate the level of achievable situational awareness and the capability to support autonomous collision avoidance. System architecture is presented and special emphasis is given to adopted solutions regarding real time integration of sensors and navigation measurements and high accuracy estimation of sensors alignment. On the basis of Global Positioning System (GPS) navigation data gathered simultaneously with multi-sensor tracking flight experiments, potential of radar/EO fusion is compared with standalone radar tracking. Flight results demonstrate a significant improvement of collision detection performance, mostly due to the change in angular rate estimation accuracy, and confirm data fusion effectiveness for facing EO detection issues. Relative sensors alignment, performance of the navigation unit, and cross-sensor cueing are found to be key factors to fully exploit the potential of multi-sensor architectures

    Dermanyssus gallinae: the long journey of the poultry red mite to become a vector

    Get PDF
    : The possibility that Dermanyssus gallinae, the poultry red mite, could act as a vector of infectious disease-causing pathogens has always intrigued researchers and worried commercial chicken farmers, as has its ubiquitous distribution. For decades, studies have been carried out which suggest that there is an association between a wide range of pathogens and D. gallinae, with the transmission of some of these pathogens mediated by D. gallinae as vector. The latter include the avian pathogenic Escherichia coli (APEC), Salmonella enterica serovars Enteritidis and Gallinarum and influenza virus. Several approaches have been adopted to investigate the relationship between D. gallinae and pathogens. In this comprehensive review, we critically describe available strategies and methods currently available for conducting trials, as well as outcomes, analyzing their possible strengths and weaknesses, with the aim to provide researchers with useful tools for correctly approach the study of the vectorial role of D. gallinae

    Actuation and Control of a Steerable Catheter for Mitral Valve Repair

    Get PDF
    In the field of Structural Heart Diseases, Mitral Regurgitation's incidence is rising because of an aging population worldwide, and it has reached an annual mortality rate near 34%. The procedures of Structural Intervention Cardiology have enlarged the number of treated patients, since their minimally invasive and trans-catheter approach. To provide a forward step-change in this procedure, the aim of this work is to improve the use of the commercially available MitraClip system®, suggesting an innovative robot-assisted platform with autonomous control for the aforementioned system. The presented methodology is constituted of two phases: in the first one, we design, in the Solidworks® environment, 3D print and integrate the mechanical support with electrical motors and micro-controller devoted to catheter's steering. In the second phase, we develop the closed-loop position control to improve the accuracy in the autonomous positioning of the catheter. The described approach was tested to demonstrate its feasibility and dexterity: a position accuracy of 1.1±0.54 mm in following a given optimal trajectory was obtained

    Hand-Tool-Tissue Interaction Forces in Neurosurgery for Haptic Rendering

    Get PDF
    Haptics provides sensory stimuli that represent the interaction with a virtual or telemanipulated object, and it is considered a valuable navigation and manipulation tool during tele-operated surgical procedures. Haptic feedback can be provided to the user via cutaneous information and kinesthetic feedback. Sensory subtraction removes the kinesthetic component of the haptic feedback, having only the cutaneous component provided to the user. Such a technique guarantees a stable haptic feedback loop, while it keeps the transparency of the tele-operation system high, which means that the system faithfully replicates and render back the user's directives. This work focuses on checking whether the interaction forces during a bench model neurosurgery operation can lie in the solely cutaneous perception of the human finger pads. If this assumption is found true, it would be possible to exploit sensory subtraction techniques for providing surgeons with feedback from neurosurgery. We measured the forces exerted to surgical tools by three neurosurgeons performing typical actions on a brain phantom, using contact force sensors, whilst the forces exerted by the tools to the phantom tissue were recorded using a load cell placed under the brain phantom box. The measured surgeon-tool contact forces were 0.01 - 3.49 N for the thumb and 0.01 - 6.6 N for index and middle finger, whereas the measured tool- tissue interaction forces were from six to eleven times smaller than the contact forces, i.e., 0.01 - 0.59 N. The measurements for the contact forces fit the range of the cutaneous sensitivity for the human finger pad, thus, we can say that, in a tele-operated robotic neurosurgery scenario, it would possible to render forces at the fingertip level by conveying haptic cues solely through the cutaneous channel of the surgeon's finger pads. This approach would allow high transparenc

    Mild Hypoxia Enhances Proliferation and Multipotency of Human Neural Stem Cells

    Get PDF
    Neural stem cells (NSCs) represent an optimal tool for studies and therapy of neurodegenerative diseases. We recently established a v-myc immortalized human NSC (IhNSC) line, which retains stem properties comparable to parental cells. Oxygen concentration is one of the most crucial environmental conditions for cell proliferation and differentiation both in vitro and in vivo. In the central nervous system, physiological concentrations of oxygen range from 0.55 to 8% oxygen. In particular, in the in the subventricular zone niche area, it's estimated to be 2.5 to 3%.We investigated in vitro the effects of 1, 2.5, 5, and 20% oxygen concentrations on IhNSCs both during proliferation and differentiation. The highest proliferation rate, evaluated through neurosphere formation assay, was obtained at 2.5 and 5% oxygen, while 1% oxygen was most noxious for cell survival. The differentiation assays showed that the percentages of β-tubIII+ or MAP2+ neuronal cells and of GalC+ oligodendrocytes were significantly higher at 2.5% compared with 1, 5, or 20% oxygen at 17 days in vitro. Mild hypoxia (2.5 to 5% oxygen) promoted differentiation into neuro-oligodendroglial progenitors as revealed by the higher percentage of MAP2+/Ki67+ and GalC+/Ki67+ residual proliferating progenitors, and enhanced the yield of GABAergic and slightly of glutamatergic neurons compared to 1% and 20% oxygen where a significant percentage of GFAP+/nestin+ cells were still present at 17 days of differentiation.These findings raise the possibility that reduced oxygen levels occurring in neuronal disorders like cerebral ischemia transiently lead to NSC remaining in a state of quiescence. Conversely, mild hypoxia favors NSC proliferation and neuronal and oligodendroglial differentiation, thus providing an important advance and a useful tool for NSC-mediated therapy of ischemic stroke and neurodegenerative diseases like Parkinson's disease, multiple sclerosis, and Alzheimer's disease
    • …
    corecore