3 research outputs found

    Safety and Dose Study of Targeted Lung Denervation in Moderate/Severe COPD Patients

    No full text
    RATIONALE: Targeted lung denervation (TLD) is a novel bronchoscopic treatment for the disruption of parasympathetic innervation of the lungs. OBJECTIVES: To assess safety, feasibility, and dosing of TLD in patients with moderate to severe COPD using a novel device design. METHODS: Thirty patients with COPD (forced expiratory volume in 1 s 30-60%) were 1:1 randomized in a double-blinded fashion to receive TLD with either 29 or 32 W. Primary endpoint was the rate of TLD-associated adverse airway effects that required treatment through 3 months. Assessments of lung function, quality of life, dyspnea, and exercise capacity were performed at baseline and 1-year follow-up. An additional 16 patients were enrolled in an open-label confirmation phase study to confirm safety improvements after procedural enhancements following gastrointestinal adverse events during the randomized part of the trial. RESULTS: Procedural success, defined as device success without an in-hospital serious adverse event, was 96.7% (29/30). The rate of TLD-associated adverse airway effects requiring intervention was 3/15 in the 32 W versus 1/15 in the 29 W group, p = 0.6. Five patients early in the randomized phase experienced serious gastric events. The study was stopped and procedural changes made that reduced both gastrointestinal and airway events in the subsequent phase of the randomized trial and follow-up confirmation study. Improvements in lung function and quality of life were observed compared to baseline values for both doses but were not statistically different. CONCLUSIONS: The results demonstrate acceptable safety and feasibility of TLD in patients with COPD, with improvements in adverse event rates after procedural enhancements.status: publishe

    Effect of Kidney Function on Drug Kinetics and Dosing in Neonates, Infants, and Children

    Get PDF
    Neonates, infants, and children differ from adults in many aspects, not just in age, weight, and body composition. Growth, maturation and environmental factors affect drug kinetics, response and dosing in pediatric patients. Almost 80% of drugs have not been studied in children, and dosing of these drugs is derived from adult doses by adjusting for body weight/size. As developmental and maturational changes are complex processes, such simplified methods may result in subtherapeutic effects or adverse events. Kidney function is impaired during the first 2 years of life as a result of normal growth and development. Reduced kidney function during childhood has an impact not only on renal clearance but also on absorption, distribution, metabolism and nonrenal clearance of drugs. 'Omics'-based technologies, such as proteomics and metabolomics, can be leveraged to uncover novel markers for kidney function during normal development, acute kidney injury, and chronic diseases. Pharmacometric modeling and simulation can be applied to simplify the design of pediatric investigations, characterize the effects of kidney function on drug exposure and response, and fine-tune dosing in pediatric patients, especially in those with impaired kidney function. One case study of amikacin dosing in neonates with reduced kidney function is presented. Collaborative efforts between clinicians and scientists in academia, industry, and regulatory agencies are required to evaluate new renal biomarkers, collect and share prospective pharmacokinetic, genetic and clinical data, build integrated pharmacometric models for key drugs, optimize and standardize dosing strategies, develop bedside decision tools, and enhance labels of drugs utilized in neonates, infants, and children
    corecore