5,573 research outputs found
Entanglement control in hybrid optomechanical systems
We demonstrate the control of entanglement in a hybrid optomechanical system
comprising an optical cavity with a mechanical end-mirror and an intracavity
Bose-Einstein condensate (BEC). Pulsed laser light (tuned within realistic
experimental conditions) is shown to induce an almost sixfold increase of the
atom-mirror entanglement and to be responsible for interesting dynamics between
such mesoscopic systems. In order to assess the advantages offered by the
proposed control technique, we compare the time-dependent dynamics of the
system under constant pumping with the evolution due to the modulated laser
light.Comment: Published versio
Characterization of Bose-Hubbard Models with Quantum Non-demolition Measurements
We propose a scheme for the detection of quantum phase transitions in the 1D
Bose-Hubbard (BH) and 1D Extended Bose-Hubbard (EBH) models, using the
non-demolition measurement technique of quantum polarization spectroscopy. We
use collective measurements of the effective total angular momentum of a
particular spatial mode to characterise the Mott insulator to superfluid phase
transition in the BH model, and the transition to a density wave state in the
EBH model. We extend the application of collective measurements to the ground
states at various deformations of a super-lattice potential.Comment: 8 pages, 9 figures; published version in PRA, Editors' Suggestio
Spontaneous nucleation of structural defects in inhomogeneous ion chains
Structural defects in ion crystals can be formed during a linear quench of
the transverse trapping frequency across the mechanical instability from a
linear chain to the zigzag structure. The density of defects after the sweep
can be conveniently described by the Kibble-Zurek mechanism. In particular, the
number of kinks in the zigzag ordering can be derived from a time-dependent
Ginzburg-Landau equation for the order parameter, here the zigzag transverse
size, under the assumption that the ions are continuously laser cooled. In a
linear Paul trap the transition becomes inhomogeneous, being the charge density
larger in the center and more rarefied at the edges. During the linear quench
the mechanical instability is first crossed in the center of the chain, and a
front, at which the mechanical instability is crossed during the quench, is
identified which propagates along the chain from the center to the edges. If
the velocity of this front is smaller than the sound velocity, the dynamics
becomes adiabatic even in the thermodynamic limit and no defect is produced.
Otherwise, the nucleation of kinks is reduced with respect to the case in which
the charges are homogeneously distributed, leading to a new scaling of the
density of kinks with the quenching rate. The analytical predictions are
verified numerically by integrating the Langevin equations of motion of the
ions, in presence of a time-dependent transverse confinement. We argue that the
non-equilibrium dynamics of an ion chain in a Paul trap constitutes an ideal
scenario to test the inhomogeneous extension of the Kibble-Zurek mechanism,
which lacks experimental evidence to date.Comment: 19 pages, 5 figure
Structural defects in ion crystals by quenching the external potential: the inhomogeneous Kibble-Zurek mechanism
The non-equilibrium dynamics of an ion chain in a highly anisotropic trap is
studied when the transverse trap frequency is quenched across the value at
which the chain undergoes a continuous phase transition from a linear to a
zigzag structure. Within Landau theory, an equation for the order parameter,
corresponding to the transverse size of the zigzag structure, is determined
when the vibrational motion is damped via laser cooling. The number of
structural defects produced during a linear quench of the transverse trapping
frequency is predicted and verified numerically. It is shown to obey the
scaling predicted by the Kibble-Zurek mechanism, when extended to take into
account the spatial inhomogeneities of the ion chain in a linear Paul trap.Comment: 5 pages, 3 figure
Berry phase for a spin 1/2 in a classical fluctuating field
The effect of fluctuations in the classical control parameters on the Berry
phase of a spin 1/2 interacting with a adiabatically cyclically varying
magnetic field is analyzed. It is explicitly shown that in the adiabatic limit
dephasing is due to fluctuations of the dynamical phase.Comment: 4 pages, 1 figure, published versio
Optimal two-qubit gate for generation of random bipartite entanglement
We numerically study protocols consisting of repeated applications of two
qubit gates used for generating random pure states. A necessary number of steps
needed in order to generate states displaying bipartite entanglement typical of
random states is obtained. For generic two qubit entangling gate the decay rate
of purity is found to scale as and therefore of order steps
are necessary to reach random bipartite entanglement. We also numerically
identify the optimal two qubit gate for which the convergence is the fastest.
Perhaps surprisingly, applying the same good two qubit gate in addition to a
random single qubit rotations at each step leads to a faster generation of
entanglement than applying a random two qubit transformation at each step.Comment: 9 pages, 9 PS figures; published versio
Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States
We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent
and thermal quantities in quantum systems. For time-dependent systems, we
modify a previous mapping to quantum circuits to significantly reduce the
computer resources required. This modification is based on a principle of
"observing" the system outside the light-cone. We apply this method to study
spin relaxation in systems started out of equilibrium with initial conditions
that give rise to very rapid entanglement growth. We also show that it is
possible to approximate time evolution under a local Hamiltonian by a quantum
circuit whose light-cone naturally matches the Lieb-Robinson velocity.
Asymptotically, these modified methods allow a doubling of the system size that
one can obtain compared to direct simulation. We then consider a different
problem of thermal properties of disordered spin chains and use quantum belief
propagation to average over different configurations. We test this algorithm on
one dimensional systems with mixed ferromagnetic and anti-ferromagnetic bonds,
where we can compare to quantum Monte Carlo, and then we apply it to the study
of disordered, frustrated spin systems.Comment: 19 pages, 12 figure
Improved Core Genes Prediction for Constructing well-supported Phylogenetic Trees in large sets of Plant Species
The way to infer well-supported phylogenetic trees that precisely reflect the
evolutionary process is a challenging task that completely depends on the way
the related core genes have been found. In previous computational biology
studies, many similarity based algorithms, mainly dependent on calculating
sequence alignment matrices, have been proposed to find them. In these kinds of
approaches, a significantly high similarity score between two coding sequences
extracted from a given annotation tool means that one has the same genes. In a
previous work article, we presented a quality test approach (QTA) that improves
the core genes quality by combining two annotation tools (namely NCBI, a
partially human-curated database, and DOGMA, an efficient annotation algorithm
for chloroplasts). This method takes the advantages from both sequence
similarity and gene features to guarantee that the core genome contains correct
and well-clustered coding sequences (\emph{i.e.}, genes). We then show in this
article how useful are such well-defined core genes for biomolecular
phylogenetic reconstructions, by investigating various subsets of core genes at
various family or genus levels, leading to subtrees with strong bootstraps that
are finally merged in a well-supported supertree.Comment: 12 pages, 7 figures, IWBBIO 2015 (3rd International Work-Conference
on Bioinformatics and Biomedical Engineering
Guest editorial: Scientific seminar of the Italian Association of Transport Academicians (SIDT) 2019
Inhomogeneous Kibble-Zurek mechanism: vortex nucleation during Bose-Einstein condensation
The Kibble-Zurek mechanism is applied to the spontaneous formation of
vortices in a harmonically trapped thermal gas following a temperature quench
through the critical value for Bose-Einstein condensation. While in the
homogeneous scenario vortex nucleation is always expected, we show that it can
be completely suppressed in the presence of the confinement potential, whenever
the speed of the spatial front undergoing condensation is lower than a
threshold velocity. Otherwise, the interplay between the geometry and causality
leads to different scaling laws for the density of vortices as a function of
the quench rate, as we also illustrate for the case of a toroidal trapping
potential.Comment: 11 pages, 3 figure
- …