7 research outputs found

    Heat Transfer To Calculate Minimum Ventilation Rates For Broilers House

    No full text
    The correct use of minimum ventilation and heating system on broiler's brooding phase is important even in tropical climates such as Brazil. Thus, the study of heat exchange is important to determine new materials of insulation for the walls and roof, in order to achieve optimal levels of thermal comfort to raise the birds. The objective of this study was to evaluate the actual minimum ventilation rate compared to the ideal ventilation rate calculated throw the heat balance of the brooding area from a tunnel ventilated broiler house totally closed with black side curtains and to improve the minimum ventilation and the heating systems to reach the ideal temperature inside the brooding area. The trail was performed at Mombuca city, State of São Paulo. The broiler house had a brooding area that was divided in 80 grids to collect the climatic variables (dry bulb temperature, relative humidity and air velocity) at the birds' level and inside and outside the broiler house and the CO2 concentration was collected only inside the brooding area. The inside and outside surface temperature of all the brooding area (curtains, ceiling and roof) was collected using a thermograph camera. All data were collected 4 times a day (9AM, 2PM, 5PM and 9PM), in winter-time. The minimum ventilation rate was calculated according the methodology proposed by Albright (1990). The temperature was always below the ideal temperature according Nicholson et al. 2004 demonstrating the need of a 58Kg of diesel/day to reach the birds ideal temperature.381387Albright, L.D., (1990) Environmental Control for Animals and Plants, , St. Joseph, MI: ASAE Textbook(1989) Handbook of Fundamentals, , ASHRAE, Atlanta, G.A.: American Society of heating, refrigerating, and Air Conditioning Engineers, IncBarnwell, B., Wilson, M., Importance of minimum ventilation (2005) Technical Focul Cobb, 1Blanes, V., Pedersen, S., Ventilation flow in pig houses measured and calculated by carbon dioxide, moisture and heat balance equations (2005) Biosystems Engineering, 92 (4), pp. 483-493. , DOI 10.1016/j.biosystemseng.2005.09.002, PII S1537511005002114(2008) Manual de Manejo de Frangos de Corte, , COBB - VANTRESS, INC. Cobb - Vantress Brasil, LTDACordeau, S., Barrington, S., Heat balance for two commercial broiler barns with solar preheated ventilation air Biosystems Engineering, 107, pp. 232-241Furtado, D.A., Dantas, R.T., Nascimento, J.W.B., Santos, J.T., Costa, F.G.P., Efeitos de diferentes sistemas de acondicionamento ambiente sobre o desempenho produtivo de frangos de corte Revista Brasileira de Engenharia Agrícola e Ambiental, 10 (2), pp. 484-489(2007) V.3.0-2-Sep07: Pontos de Controle e Critérios de Cumprimento: Garantia Integrada Da Fazenda - Aves, p. 22. , GLOBALG.APManning, L., Chadd, S.A., Baines, R.N., Key health and welfare indicators for broiler production (2007) Poultry Science, 63, pp. 63-68Medeiros, C.M., Baêta, F.C., Oliveira, R.F.M., Tinôco, I.F.F., Albino, L.F.T., Cecon, P.R., Efeitos da temperatura, umidade relativa e velocidade do ar em frangos de corte (2005) Engenharia Na Agricultura, 13 (4), pp. 277-286Miles, D.M., Owens, P.R., Rowe, D.E., Spatial variability of litter gaseous flux within a commercial broiler house: Ammonia, nitrous oxide, carbon dioxide, and methane (2006) Poultry Science, 85 (2), pp. 167-172. , http://ps.fass.org/cgi/reprint/85/2/167Miles, D.M., Rowe, D.E., Owens, P.R., Winter broiler litter gases and nitrogen compounds: Temporal and spatial trends (2008) Atmospheric Environment, 42 (14), pp. 3351-3363. , DOI 10.1016/j.atmosenv.2006.11.056, PII S1352231006012027Miles, J.W., Cardona, C., Sotelo, G., Recurrent selection in a synthetic brachiaria grass population improves resistance to three spittlebug species (2006) Crop Science, 46, pp. 1088-1093Nicholson, F.A., Chambers, B.J., Walker, A.W., Ammonia emissions from broiler litter and laying hen manure management systems (2004) Biosystems Engineering, 89 (2), pp. 175-185. , DOI 10.1016/j.biosystemseng.2004.06.006, PII S1537511004001199Pauli, D.G., Silva, J.N., Vigoderis, R.B., Tinoco, I.F.F., Galvarro, S.F.S., Desenvolvimento de um software para o dimensionamento de sistemas de ventilação e resfriamento evaporativo em instalações avícolas climatizadas (2008) Revista Engenharia Na Agricultura, 16 (2), pp. 167-179Redwine, J.S., Lacey, R.E., Mukhtar, S., Carey, J.B., Concentration and emissions of ammonia and particulate matter in tunnel-ventilated broiler houses under summer conditions in Texas (2002) Transactions of the American Society of Agricultural Engineers, 45 (4), pp. 1101-1109Tao, X., Xin, H., Temperature-Humidity-Velocity Index for market-size broilers (2003) Proc of the 2003 ASAE Annual International Meeting, , Paper No. 03403

    Litter And Air Quality In Different Broiler Housing Conditions [qualidade Da Cama E Do Ar Em Diferentes Condições De Alojamento De Frangos De Corte]

    No full text
    The objective of this work was to assess the initial conditions of poultry housing for one-day-old chicks regarding the quality of reused bedding and of the air in commercial broiler houses with different types of minimum ventilation and typology, using geostatistical analysis. The experiment was carried out in four broiler houses: Blue House I (T1) and Blue House II (T2), Dark House (T3), and Conventional (T4). The following variables were evaluated: pH, moisture, surface temperature, and ammonia concentration, and samples were collected at bird height at 80 equidistant points in the brooding areas. Geostatistical analysis helped to identify the environmental critical control points. The management of minimum ventilation is not sufficient to guarantee air quality in the brooding area. The reused coffee and rice husk beds (T1 and T2) show better quality than the reused wood shaving beds (T3 and T4). The minimum ventilation system, in T2 and T4, is the most efficient regarding air renovation inside the brooding areas.464351361dos Araújo, J.S., de Oliveira, V., Braga, G.C., Desempenho de frangos de corte criados em diferentes tipos de cama e taxa de lotação (2007) Ciência Animal Brasileira, 8, pp. 59-64de Avila, S., Mazzuco, H., de Figueiredo, E.A.P., (1992) Cama de aviário: materiais, reutilização, uso como alimento e fertilizante, p. 38. , Concórdia: Embrapa-CNPSA, (Embrapa-CNPSA. Circular técnica, 16)Ministério da Agricultura e Reforma Agrária (1992) Regras para análise da qualidade e produtividade, p. 180. , Brasil. Brasília: MDACalvet, S., Cambra-López, M., Blanes-Vidal, V., Estellés, F., Torres, A.G., Ventilation rates in mechanically-ventilated commercial poultry buildings in Southern Europe: measurement system development and uncertainty analysis (2010) Biosystems Engineering, 30, pp. 423-432Cambardella, C.A., Moorman, T.B., Novak, J.M., Parkin, T.B., Karlen, D.L., Turco, R.F., Konopka, A.E., Field scale variability of soil properties in Central Iowa soils (1994) Soil Science Society of America Journal, 58, pp. 1501-1511(2008) Manual de manejo de frangos de corte, 66. , Cobb-Vantress BrasilCressie, N.A.C., (1993) Statistics for spatial data, p. 900. , New York: John WileyDao, T.H., Zhang, H., Rapid composition and source screening of heterogeneous poultry litter by x-ray fluorescence spectrometry (2007) Annals of Environmental Science, 1, pp. 69-79Elliot, H.A., Collins, N.E., Factors affecting ammonia release in broiler houses (1982) Transactions of ASAE, 25, pp. 413-424Gallo, B.B., Penumbra: a tecnologia Dark House e suas características (2009) Revista Produção Animal - Avicultura, (26), pp. 30-33(2007) Pontos de controle e critérios de cumprimento: garantia integrada da fazenda - aves, p. 22. , GLOBALGAP. Cologne: GLOBALGAP(2009) Surfer mapping system, , Golden Software. Version 9. Golden: Golden SoftwareGonzáles, E., Saldanha, E.S.P.B., Os primeiros dias de vida do frango e a produtividade futura (2001) Anais, pp. 310-327. , CONGRESSO BRASILEIRO DE ZOOTECNIA, 11.CONGRESSO INTERNACIONAL DE ZOOTECNIA, 3., Goiânia. Goiânia: Universidade Católica de Goiás, 2001Hernandes, R., Cazetta, J.O., Método simples e acessível para determinar amônia liberada pela cama aviária (2001) Revista Brasileira de Zootecnia, 30, pp. 824-829Hernandes, R., Cazetta, J.O., de Moraes, M.B., Frações nitrogenadas, glicídicas e amônia liberada pela cama de frangos de corte em diferentes densidades e tempos de confinamento (2002) Revista Brasileira de Zootecnia, 31, pp. 1795-1802Jones, E.K.M., Wathes, C.M., Webster, A.J.F., Avoidance of atmospheric ammonia by domestic fowl and the effect of early experience (2005) Applied Animal Behaviour Science, 90, pp. 293-308Kelleher, B.P., Leahy, J.J., Henihan, A.M., O'Dwyer, T.F., Sutton, D., Leahy, M.J., Advances in poultry litter disposal technology - a review (2002) Bioresource Technology, 83, pp. 27-36Manning, L., Chadd, S.A., Baines, R.N., Key health and welfare indicators for broiler production (2007) Worlds Poultry Science Journal, 63, pp. 46-62Miles, D.M., Owens, R., Rowe, D.E., Spatial variability of litter gaseous flux within a commercial broiler house: ammonia, nitrous oxide, carbon dioxide, and methane (2006) Poultry Science, 85, pp. 167-172Miles, D.M., Rowe, D.E., Owens, P.R., Winter broiler litter gases and nitrogen compounds: temporal and spatial trends (2008) Atmospheric Environment, 42, pp. 3351-3363de Oliveira, J.E., Sakomura, N.K., Figueiredo, A.N., de Lucas Júnior, J., dos Santos, T.M.B., Efeito do isolamento térmico de telhado sobre o desempenho de frangos de corte alojados em diferentes densidades (2000) Revista Brasileira de Zootecnia, 29, pp. 1427-1434de Oliveira, M.C., Almeida, C.V., Andrade, D.O., Rodrigues, S.M.M., Teor de matéria seca, pH e amônia volatilizada da cama de frango tratada ou não com diferentes aditivos (2003) Revista Brasileira de Zootecnia, 32, pp. 951-954Owada, A.N., Nääs, I.A., de Moura, D.J., dos Baracho, M.S., Estimativa de bem-estar de frango de corte em função da concentração de amônia e grau de luminosidade no galpão de produção (2007) Engenharia Agrícola, 27, pp. 611-618Qiu, G., Guo, M., Quality of poultry litter-derived granular activated carbon (2010) Bioresource Technology, 101, pp. 379-386Robertson, G.P., (2008) GS+ geostatistics for the environmental sciences, , Version 7. Plainwell: Gamma Desing Software(2002) The statistical analysis system for Windows, , SAS INSTITUTE. Version 9. Cary: SAS InstituteTasistro, A.S., Kissel, D.E., Bush, P.B., Spatial variability of broiler litter composition in a chicken house (2004) Journal of Applied Poultry Research, 13, pp. 29-43Traldi, A.B., de Oliveira, M.C., Duarte, K.F., de Moraes, V.M.B., Avaliação de probióticos na dieta de frangos de corte criados em cama nova ou reutilizada (2007) Revista Brasileira de Zootecnia, 36, pp. 660-665Vieira, S.R., Geoestatística em estudos de variabilidade espacial do solo (2000) Tópicos em ciência do solo, pp. 1-53. , NOVAIS, R.F. deALVAREZ V., V.H.SCHAEFER, C.E.G.R. (Ed.). Viçosa: Sociedade Brasileira de Ciência do SoloWarrick, A.W., Nielsen, D.R., Spatial variability of soil physical properties in the field (1980) Applications of soil physics, pp. 319-344. , HILLEL, D. (Ed.). New York: AcademicWeaver Junior, W.D., Meijerhof, R., The effect of different levels of relative humidity and air movement on litter conditions, ammonia levels, growth, and carcass quality for broiler chickens (1991) Poultry Science, 70, pp. 746-75
    corecore