3,387 research outputs found

    Thickness and dielectric constant determination of thin dielectric layers

    Get PDF
    We derive a method for the determination of the dielectric constant and thickness of a thin dielectric layer, deposited on top of a thick dielectric layer which is in turn present on a metal film. Reflection of p- and s-polarized light from the metal layer yields minima for certain angles of incidence where the light is absorbed by the metal. The thin dielectric layer causes shifts in the angles at which the minima occur, from which the thickness and dielectric constant can be obtained. The model is tested for 3.5 and 14 nm thick photoresist gratings

    Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance

    Get PDF
    The determination of the thickness and dielectric constant of thin dielectric layers by means of surface plasmon resonance is discussed. It appears to be impossible to determine these parameters from one surface plasmon response experiment. This is illustrated theoretically. Variation of the refractive index of the solution in which surface plasmon experiments were performed allowed us to determine these parameters separately

    Performances of peace: Utrecht 1713

    Get PDF
    The Peace of Utrecht (1713), which brought an end to the War of the Spanish Succession, was a milestone in global history. Performances of Peace aims to rethink the significance of the Peace of Utrecht by exploring the nexus between culture and politics. For too long, cultural and political historians have studied early modern international relations in isolation. By studying the political as well as the cultural aspects of this peace (and its concomitant paradoxes) from a broader perspective, this volume aims to shed new light on the relation between diplomacy and performative culture in the public spher

    High-Tc bolometers with silicon-nitride spiderwebsuspension for far-infrared detection

    Get PDF
    High-Tc GdBa2Cu3O7-δ (GBCO) superconducting transition edge bolometers with operating temperatures near 90 K have been made with both closed silicon-nitride membranes and patterned silicon-nitride (SiN) spiderweb-like suspension structures. As a substrate silicon-on-nitride (SON) wafers are used which are made by fusion bonding of a silicon wafer to a silicon wafer with a silicon-nitride top layer. The resulting monocrystalline silicon top layer on the silicon-nitride membranes enables the epitaxial growth of GBCO. By patterning the silicon-nitride the thermal conductance G is reduced from about 20 to 3 μW/K. The noise of both types of bolometers is dominated by the intrinsic noise from phonon fluctuations in the thermal conductance G. The optical efficiency in the far infrared is about 75% due to a goldblack absorption layer. The noise equivalent power NEP for FIR detection is 1.8 pW/√Hz, and the detectivity D* is 5.4×1010 cm √Hz/W. Time constants are 0.1 and 0.6 s, for the closed membrane and the spiderweb like bolometers respectively. The effective time constant can be reduced with about a factor 3 by using voltage bias. Further reduction necessarily results in an increase of the NEP due to the 1/f noise of the superconductor

    A Note on the Pfaffian Integration Theorem

    Get PDF
    Two alternative, fairly compact proofs are presented of the Pfaffian integration theorem that is surfaced in the recent studies of spectral properties of Ginibre's Orthogonal Ensemble. The first proof is based on a concept of the Fredholm Pfaffian; the second proof is purely linear-algebraic.Comment: 8 pages; published versio
    corecore