30 research outputs found

    Generation and characterization of three human induced pluripotent stem cell lines (EURACi007-A, EURACi008-A, EURACi009-A) from three different individuals of the same family with arrhythmogenic cardiomyopathy (ACM) carrying the plakophillin2 p.N346Lfs*12 mutation.

    Get PDF
    Abstract Arrhythmogenic Cardiomyopathy (ACM) is a genetically based cardiomyopathy associated with ventricular arrhythmias and fibro-fatty substitution of cardiac tissue. It is characterized by incomplete penetrance. We generated human iPSCs by episomal reprogramming of blood cells from three members of the same family: the proband, affected by ACM and carrying the heterozygous plakophillin2 p.N346Lfs*12 mutation, one asymptomatic carrier of the same mutation and one apparently healthy control. hiPSCs were characterized according to standard protocols including karyotyping, pluripotency marker expression and differentiation towards the three germ layers. These hiPSC lines can be used to study the mechanisms of ACM incomplete penetrance in vitro

    Missense mutations in Desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in genes encoding desmosomal proteins have been reported to cause arrhythmogenic right ventricular cardiomyopathy (ARVC), an autosomal dominant disease characterised by progressive myocardial atrophy with fibro-fatty replacement.</p> <p>We screened 54 ARVC probands for mutations in desmocollin-2 (<it>DSC2</it>), the only desmocollin isoform expressed in cardiac tissue.</p> <p>Methods</p> <p>Mutation screening was performed by denaturing high-performance liquid chromatography and direct sequencing.</p> <p>To evaluate the pathogenic potentials of the <it>DSC2 </it>mutations detected in patients affected with ARVC, full-length wild-type and mutated cDNAs were cloned in eukaryotic expression vectors to obtain a fusion protein with green fluorescence protein (GFP); constructs were transfected in neonatal rat cardiomyocytes and in HL-1 cells.</p> <p>Results</p> <p>We identified two heterozygous mutations (c.304G>A (p.E102K) and c.1034T>C (p.I345T)) in two probands and in four family members. The two mutations p.E102K and p.I345T map to the N-terminal region, relevant to adhesive interactions.</p> <p>In vitro functional studies demonstrated that, unlike wild-type DSC2, the two N-terminal mutants are predominantly localised in the cytoplasm.</p> <p>Conclusion</p> <p>The two missense mutations in the N-terminal domain affect the normal localisation of DSC2, thus suggesting the potential pathogenic effect of the reported mutations. Identification of additional DSC2 mutations associated with ARVC may result in increased diagnostic accuracy with implications for genetic counseling.</p

    Arrhythmogenic right ventricular cardiomyopathy: mutation screening of candidate genes and in vitro functional studies

    Get PDF
    Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetically determined heart muscle disorder that presents clinically with ventricular arrhythmias, heart failure, and sudden death. The pathological process consists of progressive loss of ventricular myocardium with fibro-fatty replacement. Right ventricle is mostly involved, but presentation of the disease with predominantly left ventricular involvement has been reported. ARVC is typically inherited as a dominant disease, although recessive variants exist and the involvement of family members often can only be detected by molecular genetic analysis (low penetrance of mutations). Genetic studies over the last few years have offered insight into the potential causes of ARVC. Early works demonstrated substantial genetic heterogeneity, and at least 12 independent loci and 7 disease-genes have now been identified. These findings also implicated desmosomal proteins or proteins involved in desmosomal function as candidate causes of the disorder. In the present study Perp was investigated as a candidate gene for ARVC because of its possible role in cell-cell adhesion, as a structural constituent of desmosomes or as a protein playing an yet unknown role in desmosome assembly. After PERP human cardiac expression was tested and confirmed, 90 ARVC index cases were screened for PERP mutations by DHPLC analysis and direct sequencing. Two variations G59R in exon1 and c.1091C>T in 3'UTR were detected in two patients, in whom a mutation in a known ARVC gene was previously identified. The missense variation G59R was detected in 1 control out of 250 screened and the variation c.1091C>T was identified in 2 controls out of 192 screened. Moreover these two novel variants involved respectively a highly conserved amino acid and a highly conserved nucleotide. Interestingly index cases, carrying two mutations (one in PERP gene and one in a known ARVC gene), showed a more severe phenotype than family members carriers for only one of these variations. It is impossible to establish whether these single PERP mutations might lead to ARVC determination, but on the other hands, in patients carrying a pathogenic mutation in a different gene involved in ARVC, PERP mutations might worsen the clinical phenotype. The idea that ARVC is due to desmosomal dysfunction was strengthened by two recent studies that reported mutations in the desmosomal desmocollin-2 (DSC2) gene as the cause of ARVC. During the present study six different DSC2 mutations were identified in seven out of sixty-four ARVC unrelated Italian index cases. Two nucleotide substitutions (c.-92G>T and c.3241A>T) in 5' and 3' UTR regions were detected in two different index cases. Neither of the nucleotide changes were found in 300 chromosomes from the same population, but to exclude that these mutations could correspond to rare polymorphisms the size of the control group should be increased to 500. Moreover in order to test whether this UTR mutations could affect the expression levels of DSC2 gene, specific in vitro functional studies are needed. Another nucleotide substitution (c.348A>G) absent among 500 control chromosomes, was detected in exon 3; although this mutation corresponds to a synonymous variation (Q116Q), it has been demonstrated that it creates a cryptic splice site, leading to a deletion of 9 nucleotides. Although skipping of 9bp in the mutant transcript doesn't alter the reading frame of DNA sequence, at protein level it leads to loss of three amino acids very conserved among species. This mutation mapped on a region important for maturation of the protein. Two heterozygous point substitutions c.304G>A and c.1034T>C were detected in other two patients. Both nucleotide changes was never found in 250 unrelated controls (500 control chromosomes). Variations c.304G>A in exon 3 and c.1034T>C in exon 8 result in predicted p.E102K and p.I345T amino acid substitutions. The mutated amino acids had completely different physico-chemical properties when compared to the wild type. Both these changes occurred in a residue highly conserved among species and are located in protein regions involved on DSC2 adhesion function. The sixth mutation c.2687_2688insGA in exon 17 was detected in two different patients and in six control subjects, suggesting the possibility of a polymorphism. This mutation would affect the C terminus of DSC2a, precisely the ICS domain, by altering 4 aa residues before a termination codon is prematurely introduced. The change occurred in the last five aa residues of the protein, which are non conserved among mammals, in contrast with the high conservation of the upstream region. The final part of this thesis work was focused on the analysis of potential pathogenic effects of the last three DSC2 mutations described above in cultured cardiomyocytes. Once human cDNAs coding for wild type, two polymorphic variants and mutant proteins were obtained, constructs containing also GFP protein were expressed by transient transfection of HL-1 cell line. In transfected HL-1 cells, wild type protein and the two polymorphic variants were detected in the cell membrane, into cell-cell contact regions since co-localised with the endogenous desmoglein which was marked with a monoclonal dsg antibody. In contrast the three mutant proteins were almost exclusively distributed throughout the cytoplasm with very scarce cell membrane localisation, affecting the normal localisation of DSC2 and suggesting the potential pathogenic effect of the mutations

    Arrhythmogenic right-ventricular cardiomyopathy: molecular genetics into clinical practice in the era of next generation sequencing

    No full text
    Sudden death, ventricular arrhythmia and heart failure are common features in arrhythmogenic right-ventricular cardiomyopathy (ARVC), an inheritable heart muscle disease, characterized by clinical and genetic heterogeneity. So far, 13 disease genes have been identified, responsible for around 60% of all ARVC cases. In this review, we summarize the main clinical and pathological aspects of ARVC, focusing on the importance of the genetic testing and the application of the new sequencing techniques referred to next generation sequencing technology

    Generation of human induced pluripotent stem cell line EURACi015-A from a patient affected by dilated cardiomyopathy carrying the Lamin A/C p.Glu161Lys mutation

    No full text
    Dilated cardiomyopathy (DCM) is a common heart disorder caused by genetic and non-genetic etiologies, characterized by left ventricular dilatation and contractile dysfunction. Here, we created a human induced pluripotent stem cell line from peripheral blood mononuclear cells using non-integrating vectors from a patient carrying a heterozygous LMNA variant (c.481G > A, p.Glu161Lys, NM_170707.4). The obtained EURACi015-A line, showed the typical morphology of pluripotent cells, normal karyotype and exhibited pluripotency markers and a trilineage differentiation potential. This cell line can be successfully differentiated into cardiomyocytes and endothelial cells. This line represents a human in vitro model to study the genetic basis of DCM

    Mutations in NEBL encoding the cardiac Z-disk protein nebulette are associated with various cardiomyopathies

    Get PDF
    Introduction: Transgenic mice overexpressing mutated NEBL, encoding the cardiac-specific Z-disk protein nebulette, develop severe cardiac phenotypes. Since cardiomyopathies are commonly familial and because mutations in a single gene may result in variable phenotypes, we tested the hypothesis that NEBL mutations are associated with cardiomyopathy. Material and methods: We analyzed 389 patients, including cohorts of patients with dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), and left ventricular non-compaction cardiomyopathy (LVNC). The 28 coding exons of the NEBL gene were sequenced. Further bioinformatic analysis was used to distinguish variants. Results: In total, we identified six very rare heterozygous missense mutations in NEBL in 7 different patients (frequency 1.8%) in highly conserved codons. The mutations were not detectable in 320 Caucasian sex-matched unrelated individuals without cardiomyopathy and 192 Caucasian sex-matched blood donors without heart disease. Known cardiomyopathy genes were excluded in these patients. The mutations p.H171R and p.I652L were found in 2 HCM patients. Further, p.Q581R and p.S747L were detected in 2 DCM patients, while the mutation p.A175T was identified independently in two unrelated patients with DCM. One LVNC patient carried the mutation p.P916L. All HCM and DCM related mutations were located in the nebulin-like repeats, domains responsible for actin binding. Interestingly, the mutation associated with LVNC was located in the C-terminal serine-rich linker region. Conclusions: Our data suggest that NEBL mutations may cause various cardiomyopathies. We herein describe the first NEBL mutations in HCM and LVNC. Our findings underline the notion that the cardiomyopathies are true allelic diseases
    corecore