5,111 research outputs found

    RNA secondary structure prediction using large margin methods

    Get PDF
    The secondary structure of RNA is essential for its biological role. Recently, Do, Woods, Batzoglou, (ISMB 2006) proposed a probabilistic approach that generalizes SCFGs using conditional maximum likelihood to estimate the model parameters. We propose an alternative approach to parameter estimation which is based on an SVM-like large margin method

    Failure Analyses of Two Gas Turbine Wheels

    Get PDF
    AbstractThe results of the analysis of the catastrophic failures of two high pressure turbine wheels are discussed in this study. Fractographic and metallographic analyses on both the wheel and a set of failed blades of both wheels were performed to determine the possible events that led to failure. Both wheel materials had an austenitic microstructure, while blade materials were different for each case. One blade material is similar to INCONEL 738 nickel-based superalloy, while the other study is a single-crystal with dendritic growth microstructure. Facing two failures with apparently similar characteristics, once fractographic and metallographic analysis were performed, it was proved that failure modes respond to quite different origins in each case. This led to different corrective actions, according to each particular main contributing factor

    Chitosan induces delayed grapevine defense mechanisms and protects grapevine against Botrytis cinerea

    Get PDF
    In the present study, a commercial chitosan soluble in acid solution and obtained from shrimp shell waste, with a molecular weight of 173 kDa and a degree of acetylation of 17%, named as chitosan (173/17), was investigated. Chitosan is a well-known biopolymer whose antimicrobial properties are highly influenced by the molecular weight, degree of acetylation as well as the preparation and derivatization methods used. Chitosan (173/17) was applied on grapevine leaves before Botrytis cinerea inoculation to verify its effectiveness as a preventive treatment against the fungal infection. The expression of a set of defense marker genes, as well as accumulation of stilbene phytoalexins, was investigated. Thanks to its fungistatic and filmogenic properties, chitosan (173/17) protected grapevine leaves against B. cinerea. Moreover, it induced grapevine defense response: three days after the treatment an induction of the jasmonic acid and ethylene-mediated response, a repression of the salicylic acid-mediated signaling, and a transient accumulation of trans-resveratrol were registered. Our data indicate that chitosan (173/17), when used in preventive application, is able to protect grapevine against B. cinerea infection. The effectiveness of chitosan (173/17) as a natural ecofriendly product for the control of B. cinerea on grapevine was demonstrated

    Localising iceberg inconsistencies

    Get PDF
    In artificial intelligence, it is important to handle and analyse inconsistency in knowledge bases. Inconsistent pieces of information suggest questions like “where is the inconsistency?” and “how severe is it?”. Inconsistency measures have been proposed to tackle the latter issue, but the former seems underdeveloped and is the focus of this paper. Minimal inconsistent sets have been the main tool to localise inconsistency, but we argue that they are like the exposed part of an iceberg, failing to capture contradictions hidden under the water. Using classical propositional logic, we develop methods to characterise when a formula is contributing to the inconsistency in a knowledge base and when a set of formulas can be regarded as a primitive conflict. To achieve this, we employ an abstract consequence operation to “look beneath the water level”, generalising the minimal inconsistent set concept and the related free formula notion. We apply the framework presented to the problem of measuring inconsistency in knowledge bases, putting forward relaxed forms for two debatable postulates for inconsistency measures. Finally, we discuss the computational complexity issues related to the introduced concepts

    Quality Checks Logit Human Reliability (LHR): A New Model to Evaluate Human Error Probability (HEP)

    Get PDF
    In the years, several approaches for human reliability analysis (HRA) have been developed. The aim of the present research is to propose a hybrid model to evaluate Human Error Probability (HEP). The new approach is based on logit-normal distribution, Nuclear Action Reliability Assessment (NARA), and Performance Shaping Factors (PSFs) relationship. In the research, shortcomings related to literature approaches are analyzed, especially the limitations of the working time. For this reason, PSFs after 8 hours (work standard) during emergency conditions were estimated. Therefore, the correlation between the advantages of these three methodologies allows proposing a HEP analysis during accident scenarios and emergencies; a fundamental issue to ensure the safety and reliability in industrial plants is emergency Mmnagement (EM). Applying EM methodology, two main aspects are analyzed: system reliability and human reliability. System reliability is strongly related to the reliability of its weakest component. During incidental situations, the weakest parts of the whole system are workers (human reliability) and accidental scenarios influence the operator's ability to make decisions. This article proposes a new approach called Logit Human Reliability (LHR) that considers internal and external factors to estimate human reliability during emergencies. LHR has been applied in a pharmaceutical accident scenario, considering 24 hours of working time (more than 8 working hours). The results highlighted that the LHR method gives output data more in conformity with data banks than the conventional methods during the stress phase in an accident scenario

    A hybrid model to evaluate human error probability (HEP) in a pharmaceutical plant

    Get PDF
    The aim of the present research is to propose a hybrid model to evaluate Human Error Probability (HEP) called Logit Human Reliability (LHR). The new approach is based on logit normal distribution, Nuclear Action Reliability Assessment (NARA), and Performance Shaping Factors (PSFs) relationship. The present paper analyzed some shortcomings related to literature approaches, especially the limitations of the working time. We estimated PSFs after 8 hours (work standard) during emergency conditions. Therefore, the correlation between the advantages of these three methodologies allows proposing a HEP analysis during accident scenario and emergencies. The proposed approach considers internal and external factors that affect the operator's ability. LHR has been applied in a pharmaceutical accident scenario, considering 24 hours of working time (more than 8 working hours)

    Reliability estimation of reinforced slopes to prioritize maintenance actions

    Get PDF
    Geosynthetics are extensively utilized to improve the stability of geotechnical structures and slopes in urban areas. Among all existing geosynthetics, geotextiles are widely used to reinforce unstable slopes due to their capabilities in facilitating reinforcement and drainage. To reduce settlement and increase the bearing capacity and slope stability, the classical use of geotextiles in embankments has been suggested. However, several catastrophic events have been reported, including failures in slopes in the absence of geotextiles. Many researchers have studied the stability of geotextile-reinforced slopes (GRSs) by employing different methods (analytical models, numerical simulation, etc.). The presence of source-to-source uncertainty in the gathered data increases the complexity of evaluating the failure risk in GRSs since the uncertainty varies among them. Consequently, developing a sound methodology is necessary to alleviate the risk complexity. Our study sought to develop an advanced risk-based maintenance (RBM) methodology for prioritizing maintenance operations by addressing fluctuations that accompany event data. For this purpose, a hierarchical Bayesian approach (HBA) was applied to estimate the failure probabilities of GRSs. Using Markov chain Monte Carlo simulations of likelihood function and prior distribution, the HBA can incorporate the aforementioned uncertainties. The proposed method can be exploited by urban designers, asset managers, and policymakers to predict the mean time to failures, thus directly avoiding unnecessary maintenance and safety consequences. To demonstrate the application of the proposed methodology, the performance of nine reinforced slopes was considered. The results indicate that the average failure probability of the system in an hour is 2.8 ≥ 105 during its lifespan, which shows that the proposed evaluation method is more realistic than the traditional methods

    Preliminary realization of an electric-powered hydraulic pump system for a waste compactor truck and a techno-economic analysis

    Get PDF
    Most industrial trucks are equipped with hydraulic systems designed for specic operations, for which the required power is supplied by the internal combustion engine (ICE). The largest share of the power consumption is required by the hydraulic system during idling operations, and, consequently, the current literature focuses on energy saving strategies for the hydraulic system rather than making the vehicle traction more efficient. This study presents the preliminary realization of an electric-powered hydraulic pump system (e-HPS) that drives the lifting of the dumpster and the garbage compaction in a waste compactor truck, rather than traditional ICE-driven hydraulic pump systems (ICE-HPSs). The different components of the e-HPS are described and the battery pack was modelled using the kinetic battery model. The end-of-life of the battery pack was determined to assess the economic feasibility of the proposed e-HPS for the truck lifespan, using numerical simulations. The aim was twofold: To provide an implementation method to retrofit the e-HPS to a conventional waste compactor truck and to assess its economic feasibility, investigating fuel savings during the use phase and the consequent reduction of CO2 emissions. Results show that the total lifespan cost saving achieved a value of 65,000. Furthermore, total CO2 emissions for the e-HPS were about 80% lower than those of the ICE-HPS, highlighting that the e-HPS can provide significant environmental benefits in an urban context

    Symmetric Hyperbolic System in the Self-dual Teleparallel Gravity

    Full text link
    In order to discuss the well-posed initial value formulation of the teleparallel gravity and apply it to numerical relativity a symmetric hyperbolic system in the self-dual teleparallel gravity which is equivalent to the Ashtekar formulation is posed. This system is different from the ones in other works by that the reality condition of the spatial metric is included in the symmetric hyperbolicity and then is no longer an independent condition. In addition the constraint equations of this system are rather simpler than the ones in other works.Comment: 8 pages, no figure
    corecore