5,864 research outputs found

    Probing F-theory With Multiple Branes

    Get PDF
    We study multiple 3-branes on an F theory orientifold. The world-volume theory of the 3-branes is d=4, N=2 Sp(2k) gauge theory with an antisymmetric tensor and four flavors of matter in the fundamental. The solution of this gauge theory is found for vanishing bare mass of the antisymmetric tensor matter, and massive fundamental matter. The integrable system underlying this theory is constructed.Comment: 9 pages, harvma

    Noncommutative Superspace, N=1/2 Supersymmetry, Field Theory and String Theory

    Full text link
    We deform the standard four dimensional N=1\N=1 superspace by making the odd coordinates θ\theta not anticommuting, but satisfying a Clifford algebra. Consistency determines the other commutation relations of the coordinates. In particular, the ordinary spacetime coordinates xx cannot commute. We study chiral superfields and vector superfields and their interactions. As in ordinary noncommutative field theory, a change of variables allows us to express the gauge interactions in terms of component fields which are subject to standard gauge transformation laws. Unlike ordinary noncommutative field theories, the change of the Lagrangian is a polynomial in the deformation parameter. Despite the deformation, the noncommutative theories still have an antichiral ring with all its usual properties. We show how these theories with precisely this deformation arise in string theory in a graviphoton background.Comment: 19 page

    Semiclassical Analysis of String/Gauge Duality on Non-commutative Space

    Full text link
    We use semiclassical method to study closed strings in the modified AdS_5*S^5 background with constant B-fields. The point-like closed strings and the streched closed strings rotating around the big circle of S^5 are considered. Quantization of these closed string leads to a time-dependent string spectrum, which we argue to correspond to the RG-flow of the dual noncommutative Yang Mills theory.Comment: 19 pages, 1 figure, revtex4. minor corrections. references adde

    Superstring Perturbation Theory and Ramond-Ramond Backgrounds

    Get PDF
    We consider perturbative Type II superstring theory in the covariant NSR formalism in the presence of NSNS and RR backgrounds. A concrete example that we have in mind is the geometry of D3-branes which in the near-horizon region is AdS_5 x S_5, although our methods may be applied to other backgrounds as well. We show how conformal invariance of the string path integral is maintained order by order in the number of holes. This procedure makes uses of the Fischler-Susskind mechanism to build up the background geometry. A simple formal expression is given for a \sigma-model Lagrangian. This suggests a perturbative expansion in 1/g^2N and 1/N. As applications, we consider at leading order the mixing of RR and NSNS states, and the realization of the spacetime supersymmetry algebra.Comment: 17 pages, LaTeX, 4 figures, uses epsf, latexsym, hyperref packages Section on realization of supersymmetry algebra has been expande

    Worldsheet correlators in AdS(3)/CFT(2)

    Get PDF
    The AdS_3/CFT_2 correspondence is checked beyond the supergravity approximation by comparing correlation functions. To this end we calculate 2- and 3-point functions on the sphere of certain chiral primary operators for strings on AdS_3 x S^3 x T^4. These results are then compared with the corresponding amplitudes in the dual 2-dimensional conformal field theory. In the limit of small string coupling, where the sphere diagrams dominate the string perturbation series, beautiful agreement is found.Comment: 23 page

    Comments on Condensates in Non-Supersymmetric Orbifold Field Theories

    Get PDF
    Non-supersymmetric orbifolds of N=1 super Yang-Mills theories are conjectured to inherit properties from their supersymmetric parent. We examine this conjecture by compactifying the Z_2 orbifold theories on a spatial circle of radius R. We point out that when the orbifold theory lies in the weakly coupled vacuum of its parent, fractional instantons do give rise to the conjectured condensate of bi-fundamental fermions. Unfortunately, we show that quantum effects render this vacuum unstable through the generation of twisted operators. In the true vacuum state, no fermion condensate forms. Thus, in contrast to super Yang-Mills, the compactified orbifold theory undergoes a chiral phase transition as R is varied.Comment: 10 Pages. Added clarifying comments, computational steps and a nice pretty pictur

    Accounting for variability in ion current recordings using a mathematical model of artefacts in voltage-clamp experiments

    Get PDF
    Mathematical models of ion channels, which constitute indispensable components of action potential models, are commonly constructed by fitting to whole-cell patch-clamp data. In a previous study, we fitted cell-specific models to hERG1a (Kv11.1) recordings simultaneously measured using an automated high-throughput system, and studied cell-cell variability by inspecting the resulting model parameters. However, the origin of the observed variability was not identified. Here, we study the source of variability by constructing a model that describes not just ion current dynamics, but the entire voltage-clamp experiment. The experimental artefact components of the model include: series resistance, membrane and pipette capacitance, voltage offsets, imperfect compensations made by the amplifier for these phenomena, and leak current. In this model, variability in the observations can be explained by either cell properties, measurement artefacts, or both. Remarkably, by assuming that variability arises exclusively from measurement artefacts, it is possible to explain a larger amount of the observed variability than when assuming cell-specific ion current kinetics. This assumption also leads to a smaller number of model parameters. This result suggests that most of the observed variability in patch-clamp data measured under the same conditions is caused by experimental artefacts, and hence can be compensated for in post-processing by using our model for the patch-clamp experiment. This study has implications for the question of the extent to which cell-cell variability in ion channel kinetics exists, and opens up routes for better correction of artefacts in patch-clamp data. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'

    Dying Dyons Don't Count

    Full text link
    The dyonic 1/4-BPS states in 4D string theory with N=4 spacetime supersymmetry are counted by a Siegel modular form. The pole structure of the modular form leads to a contour dependence in the counting formula obscuring its duality invariance. We exhibit the relation between this ambiguity and the (dis-)appearance of bound states of 1/2-BPS configurations. Using this insight we propose a precise moduli-dependent contour prescription for the counting formula. We then show that the degeneracies are duality-invariant and are correctly adjusted at the walls of marginal stability to account for the (dis-)appearance of the two-centered bound states. Especially, for large black holes none of these bound states exists at the attractor point and none of these ambiguous poles contributes to the counting formula. Using this fact we also propose a second, moduli-independent contour which counts the "immortal dyons" that are stable everywhere.Comment: 27 pages, 2 figures; one minus sign correcte
    • …
    corecore