29 research outputs found

    Biocalcification by Emiliania huxleyi in batch culture experiments

    Full text link
    peer reviewedCoccolithophores, among which Emiliania huxleyi is the most abundant and widespread species, are considered the most productive calcifying organism oil earth. The export of organic carbon and calcification are the main drivers of the biological CO2 pump and are expected to change with oceanic acidification. Coccolithophores are further known to produce transparent exopolymer particles (TEP) that promote particle aggregation. As a result, the TEP and biogenic calcium carbonate (CaCO3) contribute to the export of carbon from the surface ocean to deep waters. In this context, we followed the development and the decline of E. huxleyi using batch experiments with monospecific cultures. We studied the link between different processes Such as photosynthesis, calcification and the production of TEP. The onset of calcification was delayed in relation to photosynthesis. The timing and the general feature of the dynamics of calcification were closely related to the saturation state of seawater with respect to calcite, Omega(cal). The production of TEP was enhanced after the decline of phytoplankton growth. After nutrient exhaustion, particulate organic carbon (POC) concentration increased linearly with increasing TEP concentration, suggesting that TEP contributes to the POC increase. The production of CaCO3 is also strongly correlated with that of TEP, suggesting that calcification may be considered as a Source of TEP precursors

    Study protocol for a randomized controlled trial : prophylactic swallowing exercises in head-and-neck cancer patients treated with (chemo)radiotherapy (PRESTO trial)

    Get PDF
    Background: Dysphagia is a common and serious complication after (chemo)radiotherapy (CRT) for head-and-neck cancer (HNC) patients. Prophylactic swallowing exercises (PSE) can have a significantly positive effect on post-treatment swallowing function. However, low adherence rates are a key issue in undermining this positive effect. This current randomized trial will investigate the effect of adherence-improving measures on patients' swallowing function, adherence and quality of life (QOL). Methods: This ongoing trial will explore the difference in adherence and swallowing-related outcome variables during and after PSE in HNC patients performing the same therapy schedule, receiving different delivery methods. One hundred and fifty patients treated in various hospitals will be divided into three groups. Group 1 performs PSE at home, group 2 practices at home with continuous counseling through an app and group 3 receives face-to-face therapy by a speech and language pathologist. The exercises consist of tongue-strengthening exercises and chin-tuck against resistance with effortful swallow. The Iowa Oral Performance Instrument and the Swallowing Exercise Aid are used for practicing. Patients are evaluated before, during and after treatment by means of strength measurements, swallowing and QOL questionnaires. Discussion: Since low adherence rates undermine the positive impact of PSE on post-treatment swallowing function, there is need to develop an efficient PSE protocol maximizing adherence rates

    Pelagic calcification and fate of carbonate production in marine systems

    No full text
    Human activities have contributed to the increase in atmospheric greenhouse gases such as carbon dioxide (CO2). This anthropogenic gas emission has led to a rise in the average Earth temperature. Moreover, the ocean constitutes the major sink for anthropogenic CO2 and its dissolution in surface waters has already resulted in an increase of seawater acidity since the beginning of the industrial revolution. This is commonly called ocean acidification. The increase in water temperature could induce modifications of the physical and chemical characteristics of the ocean. Also, the structure and the functioning of marine ecosystems may be altered as a result of ocean acidification. Phytoplankton productivity is one of the primary controls in regulating our climate, for instance via impact on atmospheric CO2 levels. Coccolithophores, of which Emiliania huxleyi is the most abundant species, are considered to be the most important pelagic calcifying organisms on Earth. Coccolithophores are characterized by calcium carbonate platelets (coccoliths) covering the exterior of the cells. They form massive blooms in temperate and sub-polar oceans and in particular along continental margin and in shelf seas. The intrinsic coupling of organic matter production and calcification in coccolithophores underlines their biogeochemical importance in the marine carbon cycle. Both processes are susceptible to change with ocean acidification and warming. Coccolithophores are further known to produce transparent exopolymer particles (TEP) that promote particle aggregation and related processes such as marine snow formation and sinking. Thus, the impact of ocean warming and acidification on coccolithophores needs to be studied and this can be carried out through a transdisciplinary approach.The first part of this thesis consisted of laboratory experiments on E. huxleyi under controlled conditions. The aim was to estimate the effect of increasing water temperature and acidity on E. huxleyi and especially on the calcification. Cultures were conducted at different partial pressures of CO2 (pCO2); the values considered were 180, 380 and 750 ppm corresponding to past, present and future (year 2100) atmospheric pCO2. These experiments were conducted at 13°C and 18°C. The cellular calcite concentration decreases with increasing pCO2. In addition, it decreases by 34 % at 380 ppm and by 7 % at 750 ppm with an increase in temperature of 5°C. Changes in calcite production at future pCO2 values are reflected in deteriorated coccolith morphology, while temperature does not affect coccolith morphology. Our findings suggest that the sole future increase of pCO2 may have a larger negative impact on calcification than its interacting effect with temperature or the increase in temperature alone. The evolution of culture experiments allows a better comprehension of the development of a bloom in natural environments. Indeed, in order to predict the future evolution of calcifying organisms, it is required to better understand the present-day biogeochemistry and ecology of pelagic calcifying communities under field conditions.The second part of this dissertation was dedicated to results obtained during field investigations in the northern Bay of Biscay, where frequent and recurrent coccolithophorid blooms were observed. Cruises, assisted by remote sensing, were carried out along the continental margin in 2006 (29 May – 10 June), 2007 (7 May – 24 May) and 2008 (5 May – 23 May). Relevant biogeochemical parameters were measured in the water column (temperature, salinity, dissolved oxygen, Chlorophyll-a and nutrient concentrations) in order to determine the status of the bloom at the time of the different campaigns. Calcification has been shown to be extremely important in the study area. In addition, TEP production was significant at some stations, suggesting that the northern Bay of Biscay could constitute an area of important carbon export. Mortality factors for coccolithophores were studied and the first results of lysis rates measured in this region were presented. Results obtained during culture experiments and comparison with data reported in the literature help to better understand and to predict the future of coccolithophores in a context of climate change. Data obtained during either culture experiments or field investigations allowed a better understanding of the TEP dynamics. Finally, the high lysis rates obtained demonstrate the importance of this process in bloom decline. Nevertheless, it is clear that we only begin to understand the effects of global change on marine biogeochemistry, carbon cycling and potential feedbacks on increasing atmospheric CO2. Thus, further research with a combination of laboratory experiments, field measurements and modelling are encouraged.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Cell lysis during coccolithophorid blooms in the Northern Bay of Biscay

    Full text link
    Phytoplankton cell lysis occurs in natural populations and is often associated with viral activity and zooplankton grazing. Cell lysis rates are expected to increase towards the decaying phase of the bloom and may be associated with enhanced microbial activity and export of particulate matter to the seafloor. Their estimation was based on the measurement of esterase (a cytoplasmic enzyme) activity expected to appear in the water only after cell breakage. Field investigations, supported by remote sensing data, were conducted in recent years during late spring in the Northern Bay of Biscay, where frequent and recurrent coccolithophorid blooms are observed. Results on cell lysis rates determined in surface waters will be presented with relevant biogeochemical parameters (temperature, particulate organic and inorganic carbon, transparent exopolymer particles, nutrients, chlorophyll a) in order to investigate phytoplankton dynamics in relation to coccolithophorid development. The use of this parameter to characterize bloom termination, especially during coccolithophorid blooms will be discussed

    Individual and interacting effects of pCO2 and temperature on Emiliania huxleyi calcification: Study of the calcite production, the coccolith morphology and the coccosphere size

    Get PDF
    The impact of ocean acidification and increased water temperature on marine ecosystems, in particular those involving calcifying organisms, has been gradually recognised. We examined the individual and combined effects of increased pCO2 (180 ppm V CO2, 380 ppm V CO2 and 750 ppm V CO2 corresponding to past, present and future CO2 conditions, respectively) and temperature (13°C and 18°C) during the calcification phase of the coccolithophore E. huxleyi using batch culture experiments. We showed that the cell abundance-normalized particulate organic carbon concentration (POC) increased from the present to the future CO2 treatments. A significant effect of pCO2 and of temperature on calcification was found, manifesting itself in a lower cell abundance-normalized particulate inorganic carbon (PIC) content as well as a lower PIC:POC ratio at future CO2 levels and at 18°C. Coccosphere-sized particles showed a size reduction trend with both increasing temperature and CO2 concentration. The influence of the different treatments on coccolith morphology was studied by categorizing SEM coccolith micrographs. The number of well-formed coccoliths decreased with increasing pCO2 while temperature did not have a significant impact on coccolith morphology. No interacting effect of pCO2 and temperature was observed on calcite production, coccolith morphology or on coccosphere size. Finally, our results suggest that ocean acidification might have a larger adverse impact on coccolithophorid calcification than surface water warming

    The utilization of polysaccharides by heterotrophic bacterioplankton in the Bay of Biscay (North Atlantic Ocean)

    Full text link
    This study investigates the turnover of polysaccharides by heterotrophic bacterioplankton in the northern Bay of Biscay, a productive marine system on the shelf-break of the temperate Atlantic Ocean. Field studies were conducted along the shelf-break south of Ireland and west of France (47° 07' 83'' N, 6° 92' 01'' E and 51° 34' 42'' N, 10° 49' 95'' E) during the development of phytoplankton blooms in late spring. Bacterial biomass production (BBP) near the surface ranged from 0.5 to 27.4 nmol C L-1 h-1 in both years. A direct relationship between BBP and the concentration of total polysaccharides strongly suggests the dependence of bacterial growth on the availability of semi-labile organic matter. Concentrations of combined glucose as well as rate constants of extracellular glucosidase activity and glucose uptake were determined to estimate the actual carbon fluxes from bacterial polysaccharide turnover. Results reveal that the degradation of polysaccharides n the upper 100 m of the water column sustained on average a glucose flux of 2.6 mmol C m-2 d-1 i that was available for bacterial uptake. The mean turnover time for polysaccharides was 170 and 165 days for alpha- and beta-glycosidic linked polymers, respectively. Free glucose, the labile hydrolysate of polysaccharides, had a mean turnover time of 4.5 days and supported 2.2 to 18.4% of BBP. The incorporation of glucose into bacterial biomass was stimulated by the availability of inorganic nitrogen. Overall, our results demonstrate that the bacterial recycling of polysaccharides in the Bay of Biscay generates a relevant flux of organic carbon in microbial food-webs and biogeochemical processes.http://www.co2.ulg.ac.be/peace/index.ht

    Dissolution of Biogenic Silica in the sediments of the Scheldt Continuum

    No full text
    info:eu-repo/semantics/publishe
    corecore