44 research outputs found

    Early Energy Deficit in Huntington Disease: Identification of a Plasma Biomarker Traceable during Disease Progression

    Get PDF
    Huntington disease (HD) is a fatal neurodegenerative disorder, with no effective treatment. The pathogenic mechanisms underlying HD have not been elucidated, but weight loss, associated with chorea and cognitive decline, is a characteristic feature of the disease that is accessible to investigation. We, therefore, performed a multiparametric study exploring body weight and the mechanisms of its loss in 32 presymptomatic carriers and HD patients in the early stages of the disease, compared to 21 controls. We combined this study with a multivariate statistical analysis of plasma components quantified by proton nuclear magnetic resonance (1H NMR) spectroscopy. We report evidence of an early hypermetabolic state in HD. Weight loss was observed in the HD group even in presymptomatic carriers, although their caloric intake was higher than that of controls. Inflammatory processes and primary hormonal dysfunction were excluded. 1H NMR spectroscopy on plasma did, however, distinguish HD patients at different stages of the disease and presymptomatic carriers from controls. This distinction was attributable to low levels of the branched chain amino acids (BCAA), valine, leucine and isoleucine. BCAA levels were correlated with weight loss and, importantly, with disease progression and abnormal triplet repeat expansion size in the HD1 gene. Levels of IGF1, which is regulated by BCAA, were also significantly lower in the HD group. Therefore, early weight loss in HD is associated with a systemic metabolic defect, and BCAA levels may be used as a biomarker, indicative of disease onset and early progression. The decreased plasma levels of BCAA may correspond to a critical need for Krebs cycle energy substrates in the brain that increased metabolism in the periphery is trying to provide

    Methionine metabolism in an animal model of sepsis

    Full text link
    Background: Sepsis is a disease with high incidence and lethality and is accompanied by profound metabolic disturbances. In mammalian methionine metabolism, S-adenosylmethionine (SAM) is produced, which is important in the synthesis of neurotransmitters and glutathione and as an anti-inflammatory agent. The degradation product and antagonist of SAM is S-adenosylhomocysteine (SAH). In this study, we investigated changes in methionine metabolism in a rodent model of sepsis. Methods: Sepsis was induced in male Wistar rats (n=21) by intraperitoneal injection of bacterial lipopolysaccharide (10 mg/kg). Controls (n=18) received vehicle only. Blood was collected by cardiac puncture 24 h later. Puncture of the suboccipital fossa was performed to collect cerebrospinal fluid (CSF). Methionine metabolites were measured using stable isotope dilution tandem mass spectrometry. Plasma total homocysteine and cysteine were measured by HPLC using fluorescence detection. Glutathione was assayed using a modified enzymatic microtiter plate assay. Results: We observed significantly higher plasma levels of SAM (p<0.001) and SAM/SAH ratio (p=0.004) in septic animals. In CSF, there was also a trend for higher levels of SAM in septic animals (p=0.067). Oxidative stress was reflected by an increase in the ratio of oxidized/reduced glutathione in septic animals (p=0.001). Conclusions: Sepsis is associated with an increase in SAM/SAH ratio in plasma and CSF in rodents. This indicates an altered methylation potential during sepsis, which may be relevant for sepsis-associated impairment of transmethylation reactions, circulation and defense against oxidative stress. If verified in humans, such findings could lead to novel strategies for supportive treatment of sepsis, as methionine metabolism can easily be manipulated by dietary strategies

    Dietary anaplerotic therapy improves peripheral tissue energy metabolism in patients with Huntington's disease

    Get PDF
    We previously identified a systemic metabolic defect associated with early weight loss in patients with Huntington's disease (HD), suggesting a lack of substrates for the Krebs cycle. Dietary anaplerotic therapy with triheptanoin is used in clinical trials to promote energy production in patients with peripheral and brain Krebs cycle deficit, as its metabolites – C5 ketone bodies – cross the blood–brain barrier. We conducted a short-term clinical trial in six HD patients (UHDRS (Unified Huntington Disease Rating Scale)=33±13, 15–49) to monitor the tolerability of triheptanoin. We also assessed peripheral markers of short-term efficacy that were shown to be altered in the early stages of HD, that is, low serum IGF1 and 31P-NMR spectroscopy (NMRS) in muscle. At baseline, 31P-NMRS displayed two patients with end-exercise muscle acidosis despite a low work output. On day 2, the introduction of triheptanoin was well tolerated in all patients, and in particular, there was no evidence of mitochondrial overload from triheptanoin-derived metabolites. After 4 days of triheptanoin-enriched diet, muscle pH regulation was normalized in the two patients with pretreatment metabolic abnormalities. A significant increase in serum IGF1 was also observed in all patients (205±60 ng/ml versus 246±68 ng/ml, P=0.010). This study provides a rationale for extending our anaplerotic approach with triheptanoin in HD
    corecore