6,345 research outputs found
Teleportation on a quantum dot array
We present a model of quantum teleportation protocol based on a double
quantum dot array. The unknown qubit is encoded using a pair of quantum dots,
coupled by tunneling, with one excess electron. It is shown how to create
maximally entangled states with this kind of qubits using an adiabatically
increasing Coulomb repulsion between different pairs. This entangled states are
exploited to perform teleportation again using an adiabatic coupling between
them and the incoming unknown state. Finally, a sudden separation of Bob's
qubit enables a time evolution of Alice's state providing a modified version of
standard Bell measurement. Substituting the four quantum dots entangled state
with a chain of coupled DQD's, a quantum channel with high fidelity arises from
this scheme allowing the transmission over long distances.Comment: 4 pages, 2 figure
Invariant measures on multimode quantum Gaussian states
We derive the invariant measure on the manifold of multimode quantum Gaussian
states, induced by the Haar measure on the group of Gaussian unitary
transformations. To this end, by introducing a bipartition of the system in two
disjoint subsystems, we use a parameterization highlighting the role of
nonlocal degrees of freedom -- the symplectic eigenvalues -- which characterize
quantum entanglement across the given bipartition. A finite measure is then
obtained by imposing a physically motivated energy constraint. By averaging
over the local degrees of freedom we finally derive the invariant distribution
of the symplectic eigenvalues in some cases of particular interest for
applications in quantum optics and quantum information.Comment: 17 pages, comments are welcome. v2: presentation improved and typos
corrected. Close to the published versio
A Correlation Between the Intrinsic Brightness and Average Decay Rate of Gamma-ray Burst X-ray Afterglow Light Curves
We present a correlation between the average temporal decay
({\alpha}X,avg,>200s) and early-time luminosity (LX,200s) of X-ray afterglows
of gamma-ray bursts as observed by Swift-XRT. Both quantities are measured
relative to a rest frame time of 200 s after the {\gamma}-ray trigger. The
luminosity average decay correlation does not depend on specific temporal
behavior and contains one scale independent quantity minimizing the role of
selection effects. This is a complementary correlation to that discovered by
Oates et al. (2012) in the optical light curves observed by Swift-UVOT. The
correlation indicates that on average, more luminous X-ray afterglows decay
faster than less luminous ones, indicating some relative mechanism for energy
dissipation. The X-ray and optical correlations are entirely consistent once
corrections are applied and contamination is removed. We explore the possible
biases introduced by different light curve morphologies and observational
selection effects, and how either geometrical effects or intrinsic properties
of the central engine and jet could explain the observed correlation.Comment: Accepted for Publication in ApJ; 16 pages, 15 figures, 2 table
GRB Flares: UV/Optical Flaring (Paper I)
We present a new algorithm for the detection of flares in gamma-ray burst
(GRB) light curves and use this algorithm to detect flares in the UV/optical.
The algorithm makes use of the Bayesian Information Criterion (BIC) to analyze
the residuals of the fitted light curve, removing all major features, and to
determine the statistically best fit to the data by iteratively adding
additional `breaks' to the light curve. These additional breaks represent the
individual components of the detected flares: T_start, T_stop, and T_peak. We
present the detection of 119 unique flaring periods detected by applying this
algorithm to light curves taken from the Second Swift Ultraviolet/Optical
Telescope (UVOT) GRB Afterglow Catalog. We analyzed 201 UVOT GRB light curves
and found episodes of flaring in 68 of the light curves. For those light curves
with flares, we find an average number of ~2 flares per GRB. Flaring is
generally restricted to the first 1000 seconds of the afterglow, but can be
observed and detected beyond 10^5 seconds. More than 80% of the flares detected
are short in duration with Delta t/t of < 0.5. Flares were observed with flux
ratios relative to the underlying light curve of between 0.04 to 55.42. Many of
the strongest flares were also seen at greater than 1000 seconds after the
burst.Comment: Submitted to ApJ. 20 pages (including 8 figures and 1 table
Double dot chain as a macroscopic quantum bit
We consider an array of N quantum dot pairs interacting via Coulomb
interaction between adjacent dots and hopping inside each pair. We show that at
the first order in the ratio of hopping and interaction amplitudes, the array
maps in an effective two level system with energy separation becoming
exponentially small in the macroscopic (large N) limit. Decoherence at zero
temperature is studied in the limit of weak coupling with phonons. In this case
the macroscopic limit is robust with respect to decoherence. Some possible
applications in quantum information processing are discussed.Comment: Phys. Rev. A (in press
Tomato ionomic approach for food fortification and safety.
Food fortification is an issue of paramount of importance for people living both in developed
and in developing countries. Among substances listed as "nutriceuticals", essential minerals have
been recognised for their involvement in several healthy issues, involving all ages. In this frame,
food plants are playing a pivotal role since their capability to compartmentalise ions and proteinmetal
complexes in edible organs. Conversely, the accumulation of high metal levels in those
organs may lead to safety problems. In the recent years, thanks to the availability of new and
improved analytical apparatus in both ionic and genomic/transcrittomics areas, it is became feasible
to couple data coming from plant physiology and genetics. Ionomics is the discipline that studies
the cross-analysis of both data sets. Our group, in the frame of GenoPom project granted by MiUR,
is interested to study the ionomics of tomatoes cultivars derived by breeding programmes in which
wild relatives have been used to transfer several useful traits, such as resistance to biotic or abiotic
stresses, fruit composition and textiture, etc. The introgression of the wild genome into the
cultivated one produces new gene combinations. They might lead to the expression of some traits,
such as increased or reduced adsorption of some metals and their exclusion or loading into edible
organs, thus strongly involving the nutritional food value. Our final goal is to put together data
coming from ions homeostasis and gene expression analyses, thus obtaining an ionomic tomato
map related to ions absorption, translocation and accumulation in various plant organs, fruits
included. To follow our hypothesis, we are studying the ionome of Solanum lycopersicum cv. M82
along with 76 Introgression Lines (ILs) produced by interspecific crosses between this cultivar and
the wild species S. pennellii. These ILs are homozygous for small portions of the wild species
genome introgressed into the domesticated M82 one. They are used as a useful tool for mapping
QTL associated with many traits of interest. It is worthy to note that, until now, little information is
available on QTL for ions accumulation in tomato. Moreover, as our knowledge, effects of new
gene combinations in introgressed lines on ions uptake related to food safety have not been
extensively studied. In this presentation we show results coming from the ionome analysis, carried
out on S . lycopersicum M82 and several ILs. Plants were grown in pots in a greenhouse and
watered with deionised water Thirty day-old plants were left to grow for 15 days in the presence of
non-toxic concentration of Cd, Pb, As, Cr and Zn given combined. Leaves of all plants were then
harvested and stored at -80°C for ionome and gene expression analyses. Preliminary results of
ionome analysis of S. lycopersicum M82 and several ILs, carried out using an ICP-MS, showed that
traits correlated to toxic metals and micronutrients accumulation in apical leaves were significantly
modified in response to specific genetic backgrounds. Those results are perhaps due to the
introgression of traits linked to uptake, translocation and accumulation of useful and/or toxic metal
into plant apical leaves and to interactions of the wild type introgressed genomic regions with the
cultivated genome. Also, data are shown on the identification and isolation of Solanum gene
sequences related to ions uptake, translocation and accumulation, useful for further real-time gene
expression evaluation in both cultivated and ILs during the treatments with the above-mentioned
metals
- …