689,695 research outputs found
Event-based simulation of single-photon beam splitters and Mach-Zehnder interferometers
We demonstrate that networks of locally connected processing units with a
primitive learning capability exhibit behavior that is usually only attributed
to quantum systems. We describe networks that simulate single-photon
beam-splitter and Mach-Zehnder interferometer experiments on a causal,
event-by-event basis and demonstrate that the simulation results are in
excellent agreement with quantum theory.Comment: EuroPhys. Lett. (in press); http://www.compphys.net/dl
Simulation of Quantum Computation: A deterministic event-based approach
We demonstrate that locally connected networks of machines that have
primitive learning capabilities can be used to perform a deterministic,
event-based simulation of quantum computation. We present simulation results
for basic quantum operations such as the Hadamard and the controlled-NOT gate,
and for seven-qubit quantum networks that implement Shor's numbering factoring
algorithm.Comment: J. Comp. Theor. Nanoscience (in press); http://www.compphys.net/dl
Enterohemorrhagic Escherichia coli with particular attention to the German outbreak strain O104:H4
This review deals with the epidemiology and ecology of enterohemorrhagic Escherichia coli (EHEC), a subset of the verocytotoxigenic Escherichia coli (VTEC), and subsequently discusses its public health concern. Attention is also given to the outbreak strain O104:H4, which has been isolated as causative agent of the second largest outbreak of the hemolytic uremic syndrome worldwide, which started in Germany in May 2011. This outbreak strain is not an EHEC as such but possesses an unusual combination of EHEC and enteroaggregative E. coli (EAggEC) virulence properties
Cancellation of quantum mechanical higher loop contributions to the gravitational chiral anomaly
We give an explicit demonstration, using the rigorous Feynman rules developed
in~\0^{1}, that the regularized trace \tr \gamma_5 e^{-\beta \Dslash^2} for
the gravitational chiral anomaly expressed as an appropriate quantum mechanical
path integral is -independent up to two-loop level. Identities and
diagrammatic notations are developed to facilitate rapid evaluation of graphs
given by these rules.Comment: 10 pages, LaTeX and psfig (many figures
Instrumenting self-modifying code
Adding small code snippets at key points to existing code fragments is called
instrumentation. It is an established technique to debug certain otherwise hard
to solve faults, such as memory management issues and data races. Dynamic
instrumentation can already be used to analyse code which is loaded or even
generated at run time.With the advent of environments such as the Java Virtual
Machine with optimizing Just-In-Time compilers, a new obstacle arises:
self-modifying code. In order to instrument this kind of code correctly, one
must be able to detect modifications and adapt the instrumentation code
accordingly, preferably without incurring a high penalty speedwise. In this
paper we propose an innovative technique that uses the hardware page protection
mechanism of modern processors to detect such modifications. We also show how
an instrumentor can adapt the instrumented version depending on the kind of
modificiations as well as an experimental evaluation of said techniques.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth
International Workshop on Automated Debugging (AADEBUG 2003), September 2003,
Ghent. cs.SE/030902
- …
