18 research outputs found

    Chaotic dynamics and fractal structures in experiments with cold atoms

    Full text link
    We use tools from nonlinear dynamics to the detailed analysis of cold atom experiments. A powerful example is provided by the recent concept of basin entropy which allows to quantify the final state unpredictability that results from the complexity of the phase space geometry. We show here that this enables one to reliably infer the presence of fractal structures in phase space from direct measurements. We illustrate the method with numerical simulations in an experimental configuration made of two crossing laser guides that can be used as a matter wave splitter

    Using the basin entropy to explore bifurcations

    Full text link
    Bifurcation theory is the usual analytic approach to study the parameter space of a dynamical system. Despite the great power of prediction of these techniques, fundamental limitations appear during the study of a given problem. Nonlinear dynamical systems often hide their secrets and the ultimate resource is the numerical simulations of the equations. This paper presents a method to explore bifurcations by using the basin entropy. This measure of the unpredictability can detect transformations of phase space structures as a parameter evolves. We present several examples where the bifurcations in the parameter space have a quantitative effect on the basin entropy. Moreover, some transformations, such as the basin boundary metamorphoses, can be identified with the basin entropy but are not reflected in the bifurcation diagram. The correct interpretation of the basin entropy plotted as a parameter extends the numerical exploration of dynamical systems

    Propagation of waves in high Brillouin zones : Chaotic branched flow and stable superwires

    Get PDF
    We report unexpected classical and quantum dynamics of a wave propagating in a periodic potential in high Brillouin zones. Branched flow appears at wavelengths shorter than the typical length scale of the ordered periodic structure and for energies above the potential barrier. The strongest branches remain stable indefinitely and may create linear dynamical channels, wherein waves are not confined directly by potential walls as electrons in ordinary wires but rather, indirectly and more subtly by dynamical stability. We term these superwires since they are associated with a superlattice.acceptedVersionPeer reviewe

    Unpredictability and basin entropy

    No full text
    The basin entropy is a simple idea that aims to measure the the final state unpredictability of multistable systems. Since 2016, the basin entropy has been widely used in different contexts of physics, from cold atoms to galactic dynamics. Furthermore, it has provided a natural framework to study basins of attraction in nonlinear dynamics and new criteria for the detection of fractal boundaries. In this article, we describe the concept as well as fundamental applications. In addition, we provide our perspective on the future challenges of applying the basin entropy idea to understanding complex systems

    Contribution a l'identification structurale : adequation d'un modele mathematique a des resultats d'essais

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore