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Abstract

We report unexpected classical and quantum dynamics of a wave propagating in a periodic po-

tential in high Brilloiun zones. Branched flow appears at wavelengths shorter than the typical

length scale of the ordered periodic structure and for energies above the potential barrier. The

strongest branches remain stable indefinitely and may create linear dynamical channels, wherein

waves are not confined directly by potential walls as electrons in ordinary wires, but rather indi-

rectly and more subtly by dynamical stability. We term these superwires, since they are associated

with a superlattice.

I. INTRODUCTION

Branched flow is a common phenomenon of wave dynamics: when a wave impinges a

weakly refractive medium, it can create an intensity pattern akin to the shadow of a tree [1].

Unlike normal diffusion, some of the (temporarily and accidentally) stable branches can

carry a high density of flux across long distances. Branched flow is important on hugely

disparate scales, from electron waves in two-dimensional electron gas [2], to acoustic waves

spanning thousands of kilometers in the oceans [3], or the beautiful patterns of light going

through soap bubbles [4]. All these phenomena in both classical and quantum systems arise

from wave propagation in random potentials.

As a general rule, branched flow for waves appears when the wavelength λF is shorter

than the typical length scale a of the potential given small angle deflections per ”feature”

in the potential. In most materials the lattice constants are of the order of Angstroms,

whereas the electron wavelengths are in the nanometer scale, i.e., λF > a, so we may expect

that branched flow cannot exist in crystals. However, in the last years there have been

significant research activities on superlattices, where the combined periodic structures may

create a larger-scale periodic structure. A perfect example is twisted bilayer graphene that

exhibits a large-scale moiré pattern [5] and exotic properties such as superconductivity [6–

10]. As the condition λF < a in these superlattices is generally satisfied, we may expect

that branched flow – if it exists despite the periodicity – provides important understanding

on the physical properties of novel ”designer materials” including layered structures [11–13],
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artificial lattices [14–17], and photonic systems [18].

In this work we extend the concept of branched flow to periodic potentials. Thus, we

demonstrate the ubiquity of branched flow from classical and quantum scales and from

random disorder to periodic systems. But perhaps even more important than these irregular

patterns, are the indefinitely stable branches that can arise in periodic potentials. Within

these controlled branches, propagating waves are dynamically confined, creating superwires.

Unlike wires based on energetic barriers, these superwires arise because of the dynamics. In

this regime, waves could surmount the potential barrier, but their dynamics keep them in a

narrow spatial region.

The paper is organized as follows. In Sec. II, we outline the computational methods

employed in the study of branched flow in both classical and quantum regime, which share

many features in the semiclassical limit. In Sec. III we demonstrate the appearance and

properties of branched flow in periodic systems compared to the conventional branched flow

and the Bloch wave representation. Further, in Sec. IV we examine the classical picture that

provides insight about the origin of branched flow and its relation to chaos. Channeling

effects in terms of long-lived stable branches are studied in detail in Sec. V. Finally, the

possible implications of our findings and the future directions are discussed in Sec. VI

II. METHODS

Branched flow is typically examined by classical trajectories, and by time dependent wave

packet calculations under the influence of random potentials [19]. For periodic superlattices,

we also use both classical and wave packet analysis, finding both branched and superwire

flow. The 2D results are supplemented by the simpler 1D “kick and drift” map, aiding

understanding of branching and superwire dynamical channeling.

The evolution of the wave packet is computed using the split-operator technique [20].

This iterative method comprises several steps: (i) the initial state evolves under the action

of the potential in the coordinate representation Ψ → e−iV (q)τ/~Ψ, (ii) the resulting state

is Fourier transformed into momentum representation Ψ→ Ψ̂, (iii) the state evolves in the

momentum representation Ψ̂ → e−ip
2τ/2m~Ψ̂, (iv) an inverse Fourier transform gives back

the resulting state to the coordinate representation Ψ̂(t + τ) → Ψ(t + τ). This procedure

provides a fast and reliable method to study the wave dynamics, as long as the time step τ
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is small. In fact, most of the pictures depicted here were computed within a few minutes in

a regular workstation.

If the quantum wavelength is short enough, the semiclassical approach will be valid,

making a classical analysis very informative even though the goal is to understand quantum

systems. We study the density of a large ensemble (typically thousands) of classical trajec-

tories, using initial distributions analogous to the quantum ones. Given the Hamiltonian

nature of the problem, integration is carried out with a symplectic scheme [21, 22] preserving

the phase space volume and the energy in all cases. We employ a computational cluster to

perform the classical simulations in reasonable times.

III. BRANCHED FLOW IN PERIODIC SYSTEMS

Figure 1(a) shows conventional branched flow in a two-dimensional potential character-

ized by randomly positioned wells (gray dots). The initial state corresponds to a narrow

Gaussian wave packet localized at the center. The wells are modeled by soft Fermi-type po-

tentials (see Ref. [23] and below) with an amplitude that corresponds to half of the energy

of the wave packet. The characteristics of the branching produced by this random potential

are similar to the previous findings [1].

In Figs. 1(b-d) the potential is similar to (a), but the wells are arranged to a periodic

triangular lattice. Intuitively, we may expect the system to be characterized by Bloch waves –

see Fig. 1(b) as an example. However, the propagation of the wave packet under the periodic

potential leads to branched flow that is astonishingly similar to conventional branched flow;

see Figs. 1(c-d) that are discussed in detail below. The insets show the momentum Fourier

transform of the corresponding figures. This representation does not correspond exactly to

the reciprocal space (we would need to make Bloch wave Fourier transformation), but it

helps to understand the different regimes.

First, Fig. 1(c) shows a snapshot of the full wave packet during the evolution. The

components with short wavelengths propagate faster, whereas the components with longer

wavelengths lag behind and remain closer to the origin. As the wave evolves, its Fourier

transform ΨE =
∫∞
−∞ e

−iEt/~dt for some particular energy E can be accumulated. For suffi-

ciently large lattices, waves exiting the observation window never return. This means that

the integral over infinite time can be reduced to the observation time that each compo-
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FIG. 1. (a) Branched flow in a potential made out of randomly spaced wells. (b) Bloch wave

(~k = ~0) for a triangular potential. (c) Snapshot of a Gaussian wave packet evolving in a triangular

superlattice. The real part of the wave is depicted, with red for the positive and blue for the

negative parts. The fast components lead the evolution of the wave on the periphery, while the

slower components lag near the center. (d) Eigenfunction of the wave packet of (c), made using

an energy Fourier transform. The insets show the momentum representation of the corresponding

panels.

nent of the wave packet takes to leave the picture. By using an absorbing potential around
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the observation window the filtered state ΨE is an eigenfunction by construction, but its

morphology can be very complicated without spatial periodicity as in the Bloch wave.

Figure 1(d) shows an eigenfunction of the wave packet in (c). Chaotic branching similar

to conventional branched flow in (a) is clearly visible. Some branches are localized on top

of the bumps whereas others are avoiding them. This can be a hint for the presence of

quantum scars [24–26]. Classically, these regions correspond to unstable periodic orbits of

chaotic systems. Such unstable trajectories belong to a set of measure zero in the classical

picture, but surprisingly the probability of the quantum wave is enhanced in these regions.

As another feature in Fig. 1, several wavelengths can fit in between consecutive bumps.

This indicates that these branched eigenfunctions live far beyond the first Brillouin zone.

Of course, everything can be folded into the first Brillouin zone, but we might lose some

intuition by such operation. Nevertheless, the property λF < a discussed above is clearly

fulfilled, and it has direct relevance for, e.g., twisted bilayer graphene and other moiré

superlattices [5–10].

FIG. 2. (a) Wave packet propagation with downwards initial momentum in a triangular potential

(grayscale) exposed to an absorbing disk at the center of the figure. The colors correspond to the

same propagation but in free space without the triangular lattice. (b) Same as in (a) but now the

initial state is a Bloch wave. The absorbing disk casts a shadow for the free wave, but this space

is filled by branches when the triangular potential is present.
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Next we focus on the role of the periodic potential in branching and on the complementar-

ity between branched eigenfunctions and Bloch waves. Figure 2 shows a comparison between

the evolution of a wave in a periodic triangular potential (grayscale) and in free space with-

out the potential (colorscale). The black circle in the middle corresponds to an absorbing

potential. In Fig. 2(a) the initial state is a wave packet with downward momentum, whereas

in (b) the initial state is a Bloch wave which is also descending. In both cases, the free plane

wave casts a hard shadow (no colors) as it passes the absorbing hole. Instead, the periodic

potential causes clear branches (grayscale) behind the disk. In the case of the Bloch wave

in Fig. 2(b), the periodic potential thus filters out the underlying branched fabric.

Figure 2(a) shows further surprising effects. First, the periodic potential eventually leads

to backward propagation, which is prominent in the upper-right corner. In the same region,

we can also clearly see the periodic structure resulting from the triangular potential. Such

regular patterns may emerge in a certain wavelength range, even though the majority of the

evolution occurs in a randomized fashion. Finally, on the right side of the colored region we

find a relatively straight branch in light gray that has a longitudinal node in between. This

is reminiscent of a dynamical channeling effect analyzed in detail in Sec. V.

IV. DYNAMICS OF BRANCHED FLOW

A. Integrable and non-integrable potentials

Even though the results above show that branched flow can be found in both randomized

and periodic potentials, we remind that the effect takes place only for sufficiently high

energies compared to the underlying potential [19]. Otherwise, the flow is trapped in the

troughs of the potential and the dynamics is characterized by different types of classical

diffusion, (sub-, normal, super-, anomalous) and Lévy flight behavior depending on the

system parameters [23, 27, 28]. Furthermore, branched flow also requires the wavelength

to be sufficiently small compared to the scale of the potential. As discussed above, this

makes branched flow in superlattices relevant, given the relation between typical electron

wavelengths and superlattice spacing. If the wavelength is comparable or even larger than

the lattice spacing, the wave ignores the potential just as light becomes transparent through

window glass. However, besides these requirements, there is another important ingredient
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that has not been explicitly studied before, i.e., the integrability of the potential.

In Fig. 3 we compare the dynamics of the wave packet in both classical (a-b) and quan-

tum (c-d) simulations using both integrable (a,c) and non-integrable (b,d) potentials. The

integrable potential is defined as V = −A(cosx + cos y), which corresponds to a square

lattice that is revealed by the darker regions of the picture. For this potential, the motion

can be separated into x and y in terms of Jacobi elliptic functions. The density of classical

trajectories in Fig. 3(a) shows focusing of the beam along the four main channels, but the

pattern is repetitive and predictable. Once a trajectory enters one of these channels, it re-

mains confined within its narrow boundaries as long as the potential remains periodic. This

behavior is examined in more detail in Sec. V.

In comparison, Fig. 3(b) shows the density of classical trajectories in a non-integrable

Fermi-type potential defined as V (~r) =
∑N

j=1A/ [1 + exp(|~r − ~r0j|/σ)], which is also used

above within Figs. 1 and 2. Now, ~r0j provides the location of each of the N bumps of a

square lattice (gray dots). In this case, a more intricate pattern emerges, including branches

showing up at non-trivial locations and carrying a high density of flow along variable lengths.

The drastic difference from an integrable case in Fig. 3(a) shows that the non-integrability

– corresponding to a chaotic system – is the key ingredient behind branched flow. This is

demonstrated also by the phase-space pictures given as insets: foci arise as a consequence of

cusp catastrophes, which can occur in integrable and chaotic dynamics, but the distribution

and stability of these foci is much richer when the phase space is scrambled, corresponding

to a branched flow.

In Figs. 3(c) and (d) we show the corresponding densities of quantum wave functions

evolved under the same integrable and non-integrable potentials, respectively. The agree-

ment between the classical and quantum simulations is evident, as well as the differences

between the integrable and non-integrable potentials. Hence, these results demonstrate that

the main ingredients required for the phenomenon of branched flow are similar both clas-

sically and quantum mechanically. In particular, the non-integrability of the potential is a

necessary condition – and also the default condition from an experimental perspective. Fur-

thermore, the characteristics of the main and secondary branches in classical and quantum

cases are very much alike, as clearly seen in Fig. 3.
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FIG. 3. (a) Density of classical trajectories in a square lattice defined by an integrable potential.

(b) Same as (a) but in a non-integrable potential. (c) Density of a quantum wave function in an

integrable potential. (d) Same as (c) but in a non-integrable potential.

B. Kick and drift map

To analyze the branched flow in a periodic system further, let us consider the classical

kick and drift map [1]. It is an area preserving time-discrete map based on Hamilton’s

equation of motion defined by

~pn+1 = ~pn −
−−→
∇V |~x=~xn ,

~xn+1 = ~xn + ~pn+1,
(1)
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FIG. 4. (a) Stripes and circles represent different initial manifolds in phase space (x, p). A periodic

kick in momentum produced by the potential, and a free drift (shear in phase space), transform

the initial sketch of (a) into (b) and (c) respectively. (d) After a few kicks and drifts, the initial

manifolds have been stretched and folded giving rise to cusp catastrophes. Also, some circles

remain almost unaltered, which would correspond to stable regions in phase space.

where ~x and ~p correspond to the trajectory’s position and momentum, n is a natural number

playing the role of discrete time, and V is a potential depending on the position. The kick and

drift map receives its name because of its two stages: first the momentum changes according

to the potential, and then the trajectory drifts until the next kick. This simple picture

provides useful insights about the phase space transformations that give rise to branched

flow, including the creation of foci through cusps and the stability of the long-lived branches,

among other interesting effects.

Previously, [1], the ”kick” used randomly chosen parameters, but here we repeatedly use

the same spatially periodic potential, writing

pn+1 = pn +Ksinxn,

xn+1 = xn + pn+1,
(2)

where K accounts for the height of the potential. Equations 2 define the celebrated standard

map, studied by Boris Chirikov in the context of Hamiltonian chaos and Kolmogorov-Arnold-

Moser (KAM) theory [29, 30]. For low values of the perturbation strength K, periodic

motion dominates, whereas for higher values, the phase space increasingly fills with chaotic

trajectories. Stable islands in the standard map correspond to channels or superwires in a

lattice, and branched flow corresponds to the predominantly unstable standard map zones.

We can see the effect of the standard map on different manifolds on Fig. 4. In this phase

space sketch, horizontal stripes of panel (a) would correspond to plane waves (different
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positions, same speed). The periodic kick and drift of Eq. 2 reshape these manifolds, as

shown in Fig. 4(b)-(c). After a few steps, we can see red blobs indicative of the cusp

formation. Also, some of the circles remain almost unaltered, which would correspond to

stable regions in phase space, and potentially superwires.

However, there is a crucial difference of perspective compared to most of the standard

map-chaos literature: we focus on the early and medium time development, or temporal

evolution, of the phase space structure, as in the study of branched flow.

V. STABILITY AND SUPERWIRES

According to our results above, branched flow is produced when a classical or quantum

wave with sufficient energy impinges on potential landscape (periodic or not) – as long as

the potential is not integrable. By examining Fig. 3, we can see that the four arms of the

cross both in the integrable and the non-integrable case remain stable for long times. Here

we will refer to these regions as channels – or superwires (cf. superlattices) – of the flow

that remain bounded for long times.

The stability of the channels can be understood in terms of motion normal to the super-

wire paths, which can be approximated by Mathieu functions [31, 32]. Consider a classical

trajectory starting in the center of a square lattice of repulsive soft pillars, heading to the

right between the rows of bumps (see the right panels of Fig. 5 for an example). As the tra-

jectory progresses, its motion can be linearized around the exact, straight line path down the

bumpy rows. By symmetry, the path has no transverse force on it and it remains straight.

A stability analysis is needed to determine the fate of nearby trajectories. If they are stable,

there are superwire paths oscillating down the row. Expanding the potential to second order

normal to the path, the effective potential is a harmonic oscillator with a force constant that

is varying (nearly) periodically. If that variation is approximately sinusoidal, the stability

can be assessed with the Mathieu equation,

d2x

dt2
+ (a− 2q cos 2t)x = 0. (3)

The stability of the solutions of this equation has been thoroughly studied [32]. If the time

variation has strong harmonics, the analysis and the results are similar, so we are content

with the Mathieu analysis for now.
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The key to the stability is the period π of the oscillation of 2q cos 2t relative to the time

averaged frequency
√
a. A channel trajectory is equivalently parameterized by a fixed a,

given by the shape of the potential normal to the path. Thus, we can write Eq. (3) as

d2x/dt2 + (a− 2q cos 2ωt)x = 0, where ω = 2π/τ and τ = A/v is the time to traverse a unit

cell of width A at velocity v. The velocity of the flow down the superwire relative to the

superlattice parameters becomes crucial. At high velocity, the method of averaging suggests

that the trajectory will always become stable. The Mathieu stability diagram confirms

this with ever narrowing resonances and larger regions of stability with increasing speed

(increasing ω).

Even if the velocity v is not adjustable, as is the case for electrons in twisted bilayer

graphene away from the flat band region, the frequency ratio can be controlled by the twist

angle, thus adjusting A in
√
a/ω =

√
a/(2πv/A). Or, in artificial superlattices, it can

be controlled by fabrication geometry. The stability and time dependence of a quantum

version of the Mathieu problem is exactly the same as the classical, because it is a harmonic

oscillator, a linear dynamical system. Thus, the classical stability analysis is directly related

to the quantum evolution, as confirmed for example in Fig. 3. We can test these ideas

by constructing a 2D potential with analogous properties to the 1D standard map. The

potential is given by

V = −(2q cos 2x− a) sin y2. (4)

Here we have sinusoidal wells instead of harmonic, but by Taylor expansion they are well

approximated as harmonic at y = nπ, n ∈ Z. By computing the evolution of a classical

manifold we can see how many trajectories remain within the boundaries of their initial

channels after a long time. This is shown in Fig. 5. The magenta lines show the stability

lines for Eq. 3 in agreement with the simulations. The red dashed lines help to understand

the relation between the kinetic and potential energy. Panels (a) and (b) on the right lie

on the only part of the (a, q) stability region where trajectories can override the bumps.

However, the dynamics of trajectories in (a) keeps them within the channel, thus creating

a classical superwire. The periodicity of the focusing of the trajectories is incommensurate

with respect to the periodicity of the potential. This is precisely what makes the channel

stable; otherwise the trajectories would be resonant and leave it.

The superwires should not be confused with channels that are trapped energetically, i.e.,
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confined by the bumpy potential. This regime occurs for parameters (a, q) in the region

between q > (T − a)/2 and q < (a−T )/2, where T is the initial kinetic energy (in Fig. 5 we

have chosen the kinetic energy T = 1 and this energetically trapping region corresponds to

the big blue triangle on the right of the stability plot). As shown in Fig. 5(c), trajectories

in such regime cannot surmount the potential barrier, and consequently they are restricted

to a nearly one-dimensional space. Considering a many body problem, this situation could

lead to a Luttinger liquid with correlated electrons, but our present study is restricted to

the one body problem of a particle in a superlattice.

Panels (d) and (e) of Fig. 5 show an intermediate regime, where trajectories can escape

in between the bumps but cannot ride over the top of them. Some trajectories in these

dynamical channels leak out, unlike superwires as the one shown in (a). For such values

of the energy, other diffusive mechanisms are at play [23, 27, 28], hampering controlled

transport of the flow.

Different potentials could be built where superwires would be the dominant regime in

the parameter space. The potential of Eq. 4 is specifically designed to mimic the stability of

the Mathieu equation, but for example, variations on the Fermi potential discussed above

would also be ruled by the Mathieu equation in the vicinity of the minimum (maximum)

between the bumps (wells).

Finally we demonstrate the formation of superwires in a quantum mechanical calculation.

Figure 6 shows an example of a wave packet propagation from the left into a square lattice.

The wave packet is Fourier-transformed from time to energy at a chosen energy, which

reveals a dynamically stable superwire along the channel between the bumps. However, if

the lattice were extended further to the right, tunneling to the neighboring parallel channels

would eventually occur. This dynamical tunneling [33] would correspond to the existence

of a flat electronic band along the ~k direction normal to the channel. It is easy to imagine

ways to prevent this dynamical tunneling from happening, like creating uneven channels.

Different injections could also be used to control the population of the branches [34].

VI. DISCUSSION

The results of this work connect and complete different areas in nonlinear dynamics.

Varying the energy of classical trajectories and quantum mechanical wave packets in periodic
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FIG. 5. On the left, the stability diagram for the potential of Eq. 4. The color code shows the

percentage of trajectories that remain within the initial channel from an initial wedge spanning

60◦. The magenta lines are for the stability of Eq. 3, while the red dashed lines are for q = (1−a)/2

and q = (a− 1)/2, to help identify the different regions in terms of energy. (a) Classical simulation

of a superwire, where trajectories remain confined due to the dynamics. For parameters in (b),

the horizontal channel is not populated. (c) Energetically confining channel: trajectories cannot

surmount the barriers. (d) Trajectories can escape in between the bumps, but cannot override

them. The dynamical confinement is not as strong as the one in (a). (e) Trajectories explore the

potential chaotically.

potentials gives rise to multiple dynamical regimes. Different kinds of classical diffusion have

been reported for values of the energy comparable or below the potential barriers [23, 27, 28].

At higher energies, typically several times larger than the height of the potential, we find

the branched flow regime as demonstrated here for a periodic potential. In branched flow,

individual trajectories fly over the potential and are barely affected by it, but successive

xiv



FIG. 6. Example of a stable superwire. A quantum wave packet is injected from the left into the

square lattice. A Fourier transform at a chosen energy reveals a stable superwire along a channel.

The potential, mass, and velocity are in a dynamically stable regime. Notice the difference between

the periodicity of the propagating wave and the periodicity of the potential.

interactions force the manifolds to fold onto themselves creating cusps and stable regions

in phase space that give rise to the branches. Moreover, by using periodic potentials, the

connection between classical chaos and branched flow has become evident.

The ideas presented here also lead to important questions in condensed matter physics.

Branched flow is a transient regime in time and space, so electrons will eventually resemble

Bloch waves. However, it may well be the case that this transient behavior dominates for

very long distances and live for very long times. In particular, superwires demonstrated

here can remain stable almost forever, except possibly for tunneling. Electrons traveling

through these dynamical channels of the superlattices would have zero-resistivity. Although

the persistence of the channels under perturbations still needs to be studied, it is hard to

imagine how phonons could interact with electrons in these superwires.
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