580 research outputs found

    Multi-objective optimization for the geometry of trapezoidal corrugated morphing skins

    Get PDF
    Morphing concepts have great importance for the design of future aircraft as they provide the opportunity for the aircraft to adapt their shape in flight so as to always match the optimal configuration. This enables the aircraft to have a better performance, such as reducing fuel consumption, toxic emissions and noise pollution or increasing the maneuverability of the aircraft. However the requirements of morphing aircraft are conflicting from the structural perspective. For instance the design of a morphing skin is a key issue since it must be stiff to withstand the aerodynamic loads, but flexible to enable the large shape changes. Corrugated sheets have remarkable anisotropic characteristics. As a candidate skin for a morphing wing, they are stiff to withstand the aerodynamic loads and flexible to enable the morphing deformations. This work presents novel insights into the multi-objective optimization of a trapezoidal corrugated core with elastomer coating. The geometric parameters of the coated composite corrugated panels are optimized to minimize the in-plane stiffness and the weight of the skin and to maximize the flexural out-of-plane stiffness of the skin. These objective functions were calculated by use of an equivalent finite element code. The gradient-based aggregate method is selected to solve the optimization problem and is validated by comparing to the GA multi-objective optimization technique. The trend of the optimized objectives and parameters are discussed in detail; for example the optimum corrugation often has the maximum corrugation height. The obtained results provide important insights into the design of morphing corrugated skins

    Electronic Data & Information Espionage: Civil or Criminal Liability?

    Get PDF
    From time immemorial, every country has had some crucial and vital information regarding its national security and interests. If the information was revealed to the unqualified, the subject would have been penalized as a criminal and called as a spy. Today by entering into the electronic government environment, significant amount of information about the country, protection of which is directly linked to the national security, is being exchanged or kept in cyberspace. With regards to the significance of the issue, according to the Islamic Penal Code (computer crime chapter) approved in 2009, any act in the cyberspace environment for the purpose of computer spying is considered as an illegal act and the same would be considered as the material evidence of the committed crime in the court of law and will be dealt with accordingly. Hence some new regulatory measures are necessary in IPC in order to have common grounds for the terms of dealing with the electronic espionage. Keywords: National Security - National interests - Computer crime - Cyberspace - Computer sp

    Critical behavior and phase transition of dilaton black holes with nonlinear electrodynamics

    Full text link
    In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. At first, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with Van der Waals liquid-gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show they depend on dilaton coupling constant as well as nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. {Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in case of T>TcT>T_c, we have no phase transition. When T=TcT=T_c, the system admits a second order phase transition, while for T=Tf<TcT=T_{\rm f}<T_c the system experiences a first order transition. Interestingly, for Tf<T<TcT_{\rm f}<T<T_c we observe a \textit{zeroth order} phase transition in the presence of dilaton field. This novel \textit{zeroth order} phase transition is occurred due to a finite jump in Gibbs free energy which is generated by dilaton-electromagnetic coupling constant, α\alpha, for a certain range of pressure.

    Shape optimisation of composite corrugated morphing skins

    Get PDF
    One of the challenging parts of the morphing wing is the anisotropic skin, which must be flexible enough to allow the wing to change its shape and at the same time being stiff enough to withstand the aerodynamic loads. Composite corrugated skins have exceedingly anisotropic behaviour as they are stiff along the corrugation direction but flexible in transverse direction. Hence, elastomeric coated composite corrugated panels have been proposed as a candidate for application in morphing wings. This paper presents the shape optimisation of the corrugation with respect to better performance of the morphing skin and manufacturing constraints. The shape of the skin is optimised by minimising the in-plane stiffness and weight of the skin and maximising its flexural out-of-plane stiffness. The objective functions were obtained from homogenised model that depends on geometric and mechanical properties of the coated corrugated panel by means of finite element method for thin beams. A few methods of optimisation were considered: aggregated and genetic algorithm methods as representative of two major categories of multi-objective solving methods. A number of different approaches are proposed in order to solve the problem, such as corrugated skin with and without elastomer coating. The advantages of the new optimised shape of the corrugated skin over the typical shapes are discussed

    Multi-material topology optimization for composite metal aircraft structures

    Get PDF
    This paper investigates an optimization routine for lightweight composite-metal hybrid aircraft structures. This routine is developed based on two existing topology optimization approaches, Moving Morphable Components (MMC) and level set method updated by a reaction diffusion equation. The proposed method overcomes the weakness of conventional multi-material optimizers by introducing some rules of material distribution, that enhance the manufacturability of the optimal structure. It is achieved by optimizing the main structural frame using uniform-width components first, leaving the joints as void together with the remaining design domain, and following by a conventional topology optimization using single-material level set approach. A commonly used beam model is optimized to demonstrate the key ideas of the proposed routine

    Multi-objective topology optimization and structural analysis of periodic spaceframe structures

    Get PDF
    Reduction of structural weight provides significant benefits in many engineering applications. While methods to optimise structural shape and topology of both continuous solids and discrete frame structures have existed for a while, the advent of additive layer manufacturing processes has enabled more complex geometries to be feasible. In this paper, a periodic spaceframe structure is designed for minimum mass and maximum effective flexural and torsional rigidities. A method of parametrising the spaceframe through its constituent unit cells is proposed, and Genetic Algorithm (GA) multi-objective optimisation is used to optimise its topology, size and geometry as a generic structure. The superior performance of the topology optimised periodic spaceframe is highlighted in terms of structural rigidity, large deformation capability, buckling and vibrational modal analysis in compare to equivalent beam structures of identical weight and comparable domain. The results show that the proposed method can effectively generate lightweight substitute structures of great mechanical performance in many beam structures applications, such as: aircraft wing spars. The periodic spaceframe is applied into a conventional aircraft wing structure to demonstrate the possibilities of promoting weight saving in the design of civil aircraft wings

    Fluid–Structure Interaction Analysis of the Fish Bone Active Camber Mechanism

    Get PDF
    • …
    corecore