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Abstract Morphing concepts have great importance for the
design of future aircraft as they provide the opportunity for the
aircraft to adapt their shape in flight so as to always match the
optimal configuration. This enables the aircraft to have a better
performance, such as reducing fuel consumption, toxic emis-
sions and noise pollution or increasing the maneuverability of
the aircraft. However the requirements of morphing aircraft
are conflicting from the structural perspective. For instance
the design of a morphing skin is a key issue since it must be
stiff to withstand the aerodynamic loads, but flexible to enable
the large shape changes. Corrugated sheets have remarkable
anisotropic characteristics. As a candidate skin for a morphing
wing, they are stiff to withstand the aerodynamic loads and
flexible to enable the morphing deformations. This work pre-
sents novel insights into the multi-objective optimization of a
trapezoidal corrugated core with elastomer coating. The geo-
metric parameters of the coated composite corrugated panels
are optimized to minimize the in-plane stiffness and the
weight of the skin and to maximize the flexural out-of-plane
stiffness of the skin. These objective functions were calculated
by use of an equivalent finite element code. The gradient-
based aggregate method is selected to solve the optimization
problem and is validated by comparing to the GA multi-
objective optimization technique. The trend of the optimized
objectives and parameters are discussed in detail; for example

the optimum corrugation often has the maximum corrugation
height. The obtained results provide important insights into
the design of morphing corrugated skins.
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1 Introduction

1.1 About morphing aircraft

Improving the performance of an aircraft is important for a
variety of reasons, such as: reducing the energy consumption,
decreasing the toxic emissions and noise pollution or increas-
ing the maneuverability of the aircraft (Barbarino et al. 2011;
Chekkal et al. 2014). The only way of achieving these objec-
tives is through better engines, more aerodynamically efficient
wings, and lighter structures. However, the problem with the
design of current aircraft wings is that they cannot be opti-
mized for every single point of the flight envelope, for exam-
ple take off, cruise and landing. In other words the wings of an
aircraft are a compromise that limits the flight to a range of
conditions where the performance of the aircraft at each con-
dition is sub-optimal. Hence, a new generation of aircraft
known as morphing aircraft are needed for further improve-
ment of the aircraft performance without unacceptable penal-
ties in terms of cost, complexity and weight. Compliant struc-
tures and mechanisms with highly anisotropic mechanical be-
havior enable these aircraft to adapt their shape in flight so as
to always match the optimal configuration. In contrast to con-
ventional aircraft design, the new morphing technology pro-
vides higher efficiency in terms of lightness, size of volume,
energy consumption and mission diversity.
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1.2 Corrugation and anisotropic behavior

The requirements for morphing aircraft are conflicting. For
instance, the skin is a critical component of the morphingwing
and must be stiff to withstand the aerodynamic loads, but also
must be flexible to enable the shape changes. Corrugated
sheets have exceedingly anisotropic behaviour; they are stiff
along the corrugation direction, but flexible in the transverse
direction. For this reason, coated composite corrugated panels
have been proposed as a candidate morphing skin (Dayyani
et al. 2015a). Corrugated panels have other remarkable char-
acteristics, such as a high ratio of strength to density, good
energy absorption and easy fabrication. Hence many papers
have been published in the literature investigating the mechan-
ical behavior of corrugated sheets for general applications,
such as the effect of different shapes of the corrugation on
the bending stiffness of the panel (Luo et al. 1992), their geo-
metric and material nonlinearities with different loading con-
figurations through finite element analysis (Gilchrist et al.
1999), the equivalent properties of the panels by
homogenized-based analytical models (Bartolozzi et al.
2014) and the dynamic response of corrugated sandwich
panels in free vibration analysis (Peng et al. 2014) or under
air blast loadings (Li et al. 2014; Zhang et al. 2014).

1.3 Morphing skin and corrugation

The development of smart materials and adaptive structures
motivated designers to consider corrugated sheets in
morphing skin applications. Researchers have studied the de-
tailed nonlinear mechanical behaviour of composite corrugat-
ed sheets through experimental and numerical models. These
models were used as a base for further homogenization studies
that retained the dependence on the geometric parameters of
the corrugated panels (Dayyani et al. 2014; Mohammadi et al.
2015; Shaw et al. 2015). The open question regarding the
applicability of the papers in the literature to system level
optimization in morphing aircraft was considered in
(Dayyani et al. 2015b). In this paper, Dayyani et al. proposed
and justified the design of corrugated skins on top of a
morphing internal structure known as FishBAC (Fish Bone
Active Camber). The FishBAC internal structure consists of a
thin chord wise bending beam spine with stringers branching
off to connect the spine to the skin surface. They highlighted
the interaction of corrugated skin with both the internal struc-
ture and the air flow in the real application. They discussed
that the out-of-plane deformation of the skin is the most influ-
ential factor on the aerodynamic performance of the wing and
can occur due to buckling of the skin while actuating the
internal structure and due to the distribution of aerodynamic
loading.

In this paper a general procedure for the multi objective
optimization of a corrugated morphing skin is presented.

The multi objective optimization is performed in terms of
three objective functions: the mass of the skin, the tensile in-
plane stiffness and the flexural out-of-plane stiffness. A finite
element code for thin beam elements is written inMATLAB to
calculate the equivalent tensile and flexural stiffness of the
corrugated morphing skin. The gradient-based aggregate
method is used to perform the multi-objective optimization
and the corresponding results are validated by comparing to
those data obtained by the GA multi-objective optimization
technique. The strengths and limitations of each method are
then highlighted through the comparison. The trend of the
optimized objectives and parameters are discussed in detail
which provides a good insight into the design of corrugated
morphing skins. The obtained results are very encouraging
and the described procedure can be applied to more complex
analyses such as uncertainty analysis and the robust optimiza-
tion problem.

2 Problem statement

Among different typical shapes of corrugation, the trapezoidal
profile has better performance with regard to the morphing
application. The coated corrugated core with trapezoidal cor-
rugation profile has higher out-of-plane stiffness and lower in-
plane stiffness than other shapes. The higher out-of-plane stiff-
ness of the skin results in a smoother surface of the wing
during flight, while lower in-plane stiffness results in smaller
energy requirements for morphing actuation. For this reason
the trapezoidal corrugation shape is selected for the optimiza-
tion of corrugated skin.

2.1 Equivalent properties of the coated corrugated core

The equivalent tensile and flexural stiffnesses and the mass of
a coated trapezoidal corrugated core were calculated using a
finite element code which considers 4 unit cells of corruga-
tion. The parameters a1, a2, a3 and h defining the geometry of
a trapezoidal corrugated unit cell (as shown in Fig. 1b), and tc
and te representing the thickness of the corrugated core and
elastomeric coating, were the inputs of this FE code in
MATLAB. The material properties were defined by means
of ρc and ρe representing the density of the composite core
and the elastomeric coating, and Ec and Ee representing the
Young’s modulus of the composite core and the elastomeric
coating. Since the ratio of the elastomer Young’s modulus to
the glass fiber Young’s modulus is very small, a reasonable
assumption is to neglect the elastomer coating in the areas
overlapped with the composite corrugated core (Dayyani
et al. 2013).

Two translational degrees of freedom and one rotational
degree of freedom in the global coordinate system were con-
sidered at each node. The coated corrugated structure was
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discretized by 26 beam elements. The difference between the
equivalent properties of a long corrugated panel and a corru-
gated panel with 4 unit cells was examined in ABAQUS and
was smaller than 1 %. The finite element code calculating the
equivalent properties was a function called in the optimization
solver.

2.2 Multi objective optimization

Figure 2 illustrates the geometry of the proposed design of
corrugated skin on top of a morphing internal structure, name-
ly the FishBAC (Dayyani et al. 2015b). The length of the
morphing section in this design, i.e. lmorph, between the rigid
leading edge and rigid trailing edge, was 160 mm, which is
equivalent to 52 % of the chord length. The number of
FishBAC stringers, ns, was allowed to vary between 3 and
15. Based on the distance between two adjacent stringers
(i.e. ds= lmorph/(ns+ 1)) and manufacturing constraints the
number of corrugation unit cells,Nu, was allowed to vary from
1 toNu-final, which is calculated by rounding down the ratio ds/
Luc_a. The parameter Luc_a refers to the minimum allowable
length of a corrugation unit cell which was set to 5 mm due to
manufacturing limits. In other words, ns and Nu can be con-
sidered as an implicit constraints on the length of the corruga-
tion unit cell in the optimization procedure:

Lunitcell ¼ lmorphing
Nstringers þ 1
� �

Nunitcell
ð1Þ

(1) is derived by combining Lunitcell ¼ dstringers
Nunitcell

and

dstringers ¼ lmorphing
Nstringersþ1ð Þ. Table 1 presents the range of the corru-

gation unit cell lengths corresponding to different possible

configurations of FishBAC stringers and the corrugated skin.
Table 1 show that increasing the number of stringers re-

duces the range of the number of unit cells due to the mini-
mum allowable length restriction. This results in the non-
uniform increasing increments of corrugation unit cell lengths.
The height of the rigid part at the end of trailing edge, which is
shown as lrt in Fig. 2, was used as a criterion of the upper
bound for the height of the corrugated unit cell. The value for
this parameter was estimated as 5.21 mm in the FishBAC
geometry.

The materials for the composite core and the elastomer
coating of the corrugated skin are selected from the literature.
The density of composite corrugated core and elastomer coat-
ing were 1799 and 878 kg/m3, while their equivalent isotropic
Young’s moduli were 34,473 and 10 MPa respectively. It
should be mentioned here that these material properties corre-
spond to fiber glass composite and synthetic rubber, namely
polyurethane (PU). Although, a full optimization of both ge-
ometry and material properties of the corrugated morphing
skin may be necessary, this article is focused on the geometric
parameters of the skin to highlight their effects on the mechan-
ical behavior of the structure in a more sensible manner .

Table 2 shows the geometrical parameters of a coated cor-
rugated core unit cell (as shown in Fig. 1b) and their corre-
sponding upper and lower bounds.

Selecting the upper and lower bounds for the thickness of
both the corrugated core and the elastomeric coatings was
based on practical considerations. The properties of the corru-
gated skin arise from localized bending within the corruga-
tions; if the ratio of the thickness of the corrugated core to the
length of a unit cell is too high, then the mechanism of the
deformation changes, resulting in a panel that is too stiff, es-
pecially when the size of the corrugation is very small. The
lower bounds are set by the availability of suitable material

Fig. 1 Trapezoidal corrugated
core with elastomeric coating
(Dayyani et al. 2013)

Fig. 2 Corrugated morphing skin on top of a FishBAC internal structure (Dayyani et al. 2015b)
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and its robustness and handling properties. The upper bound
and lower bound for a1, a2, a3 were selected to be consistent
with the geometry of a trapezoidal shape. Considering the
application of the corrugated panel for a morphing skin, the
height of the corrugated unit cell is dependent on the external
parameter lrt which is the maximum size that the height of the
panel can be. Based on Fig. 1b the equation a1 + a2 +
a3 = (LUC/2) was considered as the only explicit constraint of
the optimization problem, where LUC represents the length of
a unit cell and is implicitly constrained by the number of
FishBAC stringers and the number of corrugation unit cells.
The following three objectives are minimized: the equivalent
tensile stiffness EAeq, the inverse of the equivalent flexural
stiffness 1

EIeq
and the mass of the skin. In order to ensure the

best performance of the optimization scheme all the parame-
ters were normalized between −1 and +1. The normalized
objective functions were also calculated based on their value
at the average parameter values.

2.3 Selection of the multi-objective optimization method

In general two different types of techniques are used to solve
multi objective optimization problems. These two types are
known as classical methods and evolutionary methods. The
classical methods, which are mainly non-Pareto based tech-
niques, consist of converting the multi objective problem into
a single objective problem. This is possible by either aggre-
gating the objective functions or optimizing one objective and
treating the other as constraints. This new single objective
function will then be optimized for different configurations
of weights of the objective functions. The classic aggregate
method is easy to implement especially for a few objectives

and is efficient for some multi-objective optimization prob-
lems with convex Pareto fronts (Izui et al. 2015). On the other
hand the evolutionary methods mainly use non dominated
ranking and selection, to move the population towards the
Pareto front. These methods require a ranking procedure and
a technique to maintain the diversity in the population so as to
avoid converging to a single solution, because of the stochas-
tic noise involved in this process. These evolutionary ap-
proaches are less susceptible to the shape or continuity of
the Pareto front. However, in many cases the Pareto curves
cannot be computed efficiently, even if it is theoretically pos-
sible to find of all these points exactly, which is why approx-
imation methods for these techniques are frequently used. In
this section the aggregate method from the classic methods
and the Genetic Algorithm (GA) from the evolutionary tech-
niques are used to solve the multi objective optimization prob-
lem for a unit cell length of 10 mm corresponding to specific
cases 3.4, 7.2 and 15.1. It should bementioned here that in this
nomenclature the numbers before and after the “.” refer to the
number of FishBAC stringers and corrugation unit cells, re-
spectively. For example case 15.1 refers to nstringer=15 and
Nunitcell=1. The results obtained from both methods are com-
pared and the multi-objective optimization technique used in
this paper is selected. It should be noted that the GA approach
may be more beneficial for the system level optimization,
which includes integer parameters for the number of stringers
and corrugation unit cells.

2.3.1 Gradient based aggregate method

In this section the multi-objective problem is solved by com-
bining three objectives into a single-objective scalar function.

Table 1 A range of the corrugation unit cell lengths corresponding to different configurations of FishBAC stringers and the corrugated skin

Table 2 The parameters of the optimization problem and their upper and lower bounds

Parameters tc te a1 a2 a3 h
Delineation Thickness of Corrugation unit cell geometry (Fig. 1b)

Corrugated core Elastomer coating

Lower bound LUC/60 (mm) LUC/60 (mm) LUC/12 (mm) LUC/12 (mm) LUC/12 (mm) lrt/2 (mm)

Upper bound LUC/30 (mm) 2LUC/30 (mm) LUC/3 (mm) LUC/3 (mm) LUC/3 (mm) 9lrt/10 (mm)
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This approach is also known as the “weighted-sum” or
“scalarization” method. In more detail, the aggregate method
minimizes a positively weighted convex sum of the objec-

tives, i.e. min ∑
3

j¼1
wj f j ζð Þ. This new single objective optimi-

zation problem is then solved using the “fmincon” command
which is a gradient based method in MATLAB. This method
is appropriate for problems where the objective and constraint
functions are both continuous and have continuous first deriv-
atives; this does not cause any restriction on the use of this
method for this optimization problem as continuous analytical
solutions have been proposed for the mechanical behavior of
these structures. Weighting coefficients in this equation are
positive and represent the relative importance of the objective
functions fj(ζ) and ζ is the vector of the input parameters in the
optimization problem. It is assumed that the sum of the

weighting coefficients is equal to one, i.e. ∑
3

j¼1
wj ¼ 1. This

technique is ideal for cases where preferential information
about the objectives is known in advance. However, it is pos-
sible to achieve the non-dominated front by considering a
broader interval of the aggregation parameters. Since the so-
lutions of this optimization problem can vary significantly as
the weighting coefficients change, and because very little is
usually known about choosing these coefficients, it is neces-
sary to solve the same problem for many different values of
these weights. Adaptive weighting algorithms may be used to
generate a good representation of the Pareto curve, although
further evaluations of a bi-level optimization problem are
needed in this regard (Zhang and Gao 2006). However, the
weights were considered to vary from 0.01 to 0.99 in incre-
ments of 0.01. While the aggregate method is simple to im-
plement, it has some limitations and drawbacks. For instance,
obtaining points on non-convex portions of the Pareto optimal
set is impossible and varying the weights consistently and
continuouslymay not necessarily result in an even distribution
of Pareto optimal points (Das and Dennis 1997). The results
obtained by this method are presented in Section 2.3.3 for the
unit cell length of 10 mm corresponding to the specific cases
3.4, 7.2 and 15.1.

2.3.2 Pareto based GA method

Normally, the multi-objective optimization problems are con-
flicting in nature and hence there does not exist a single solu-
tion that simultaneously optimizes all objectives. A change in
the optimization parameters of an individual point which
makes at least the value of one objective function better with-
out making any others worse, is called a Pareto improvement.
A set of individuals are then defined as "Pareto optimal" when
no further Pareto improvements are possible. There are many
different techniques in the literature (Hochman and Rodgers

1969; Deb 2001; Marler and Arora 2004) to select the Pareto
optimal set, which are beyond the scope of this paper. In this
section the multi-objective problem is solved using the Pareto
based GA technique in MATLAB. More details of the funda-
mentals of genetic algorithms can be found in (Munk et al.
2015; Goldberg and Holland 1988).

In this section the multi objective optimization problem is
solved by use of the “gaoptimset” command inMATLAB. All
settings were considered as default except two: the population
size and the crossover fraction. First with the fixed population
size of 200 the effect of crossover fraction was investigated.
Neglecting the elite children in each generation, the crossover
fraction coefficient specifies the ratio of the crossover children
to mutation children. For instance a crossover fraction of 1
means that all children other than elite individuals are cross-
over children, while a crossover fraction of 0 means that all
children are mutation children. In fact neither of these ex-
tremes is an effective strategy to optimize a function and the
best value for crossover fraction is dependant to the nature of
the optimization problem. To select the best crossover fraction
in this problem, a set of different crossover coefficients of [0.2,
0.3,…, 0.8] was considered. With each cross over coefficient,
seven optimization runs were performed and the correspond-
ing best compromise point was selected. Figure 3 shows the
means and standard deviations of the best compromise point
in all of these optimization runs for each value of the crossover
fraction.

It is evident in Fig. 3 that for this multi objective problem,
setting the crossover fraction to 0.3 yields the best result since
it has the minimum deviation and minimum mean value for
each objective functions. Due to the stochastic behaviour of
the genetic algorithm this procedure must be done prior to the
proper use of this method. In Fig. 3 the two objectives of EAeq

and 1
EIeq

are combined into EAeq

EIeq
, to produce a better illustration

as a 2D standard deviation rather than a 3D standard deviation.
Another parameter which increases the efficiency of the
Pareto front in GA is the size of the population. Population
sizes of [50, 100, 200, 400] were tried in the optimization and
finally a population size of 200 was selected because of time
efficiency and better fitness values. The results obtained by
the GA method are presented in Section 2.3.3. for a unit cell
length of 10 mm corresponding to specific cases 3.4, 7.2 and
15.1.

2.3.3 Comparison of the GA and aggregate methods

The gradient based aggregate method differs from the GA in
two main ways. The aggregate method generates a single
point at each iteration and the next point is selected in the
sequence by a deterministic computation. At the end the se-
quence of points approaches the optimal solution. On the other
hand the genetic algorithm generates a population of
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individuals at each iteration and the next population is selected
by stochastic computation. Finally the points with higher
ranking in the population approach the Pareto optimal.

Figure 4 shows the normalized optimum Pareto surface and
its projection on three planes for the unit cell length of 10 mm
corresponding to the specific cases 3.4, 7.2 and 15.1. In this
figure the red and black points correspond to the GA multi
objective and the gradient aggregate methods respectively.
Figure 4 shows a non-convex curvature of the Pareto front
of the multi objective optimization problem and there is a
difference in the smoothness of the Pareto front obtained from
these two methods. As discussed earlier one of the main

drawbacks of the aggregate method is the inability to obtain
points on non-convex portions of the Pareto optimal set.
Hence before using the aggregate method there must be some
information which verifies the non-convex curvature of the
Pareto front. The verification here is obtained by observing
the good correlation of results obtained by the aggregate meth-
od with those on the GA Pareto front. In addition Fig. 4 shows
that the weight distribution in the aggregate problem has re-
sulted in an even distribution of Pareto optimal points.
Moreover the Pareto curve is less smooth for the genetic al-
gorithm, compared to the gradient based aggregate method,
which is due to the randomness and stochastic nature of the

Fig. 4 Comparison of the GA
and the gradient based aggregate
methods, for the unit cell length of
10 mm corresponding to specific
cases 3.4, 7.2 and 15.1

Fig. 3 Standard deviation
analysis of the crossover fraction
effect in the GA, and selection of
CFn = 0.3 in the optimization
problem
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genetic algorithm. Considering all these points, the gradient
based aggregate method is selected to solve the multi-
objective optimization problem described in Section 2.2.

3 Discussion

Selecting the proper method to solve the multi-objective opti-
mization problem, the results were obtained for different num-
bers of FishBAC stringers and corrugation unit cells as pre-
sented in Table 1. Figures 5a and 6a show the normalized
Pareto surface and its projection on three planes for the unit
cell length of 17.78 mm corresponding to specific case 8.1 and
the unit cell length of 5.33mm corresponding to specific cases
[4.6, 5.5, 9.3, 14.2]. The Pareto fronts for the other cases are
similar to one of these two patterns. The best compromise
point of these two configurations is also highlighted as red
in Figs. 5a and 6a. The best compromise point was selected
by first identifying the ideal reference point as the coordinates
of minimum normalized objective values, i.e.:

Pre f ¼ 1

EIeq

� �
min

; EAeq
� �

min; Massskinð Þmin

� �
ð2Þ

Then the point which had the minimum distance from the
ideal reference point, in the normalized objective function
space, was selected as the best compromise point. Table 3
presents the corresponding weights of the optimization tech-
nique, the real values of the objectives and the optimized
parameters corresponding to the best compromise point for
the unit cell lengths of 17.78 mm and 5.33 mm. The range
of the weights shows that all of the three objectives are in-
volved efficiently in the process of optimization for the best

compromise point. Another point which must be noted in
Table 3 is the range of differences in the value of the optimized
parameters and objectives in these two cases, which is due to
contracting the size of the corrugation in contrast to increasing
the number of stringers. The comparison of the best compro-
mise point of these two cases implies that more desirable
objective values will be attained by reducing the size of the
corrugation.

Figures 5b and 6b show the effect of weight distribution on
the Pareto surfaces for the unit cell lengths of 17.78 and
5.33 mm. Generally, the relative value of the weights reflects
the relative importance of the objectives. The dominance of
each objective function is highlighted when its corresponding
weight is in range of [0.7–1]. In these Pareto surfaces, the
relatively horizontal plane highlighted as magenta is obtained
when the weight w3 corresponding to the third objective, i.e.
the mass of skin, is dominant. In other words this plane has
mainly minimized the mass of the skin but not the two other
objectives: 1

EIeq
and EAeq. The plane highlighted as green is

obtained when the w1, corresponding to the first objective i.e.
1

EIeq
, is dominant since the two other objectives are not mini-

mized significantly. Likewise the region highlighted as orange
is obtained when the weight w2 corresponding to the second
objective is dominant.

4 Trends of parameters and objective functions

In order to investigate the trend of the optimized parameters
and objectives at the best compromise points for all of the
configurations of the FishBAC stringers and corrugation unit
cells are collected and studied in this section. Figure 7 shows
the trend of first optimized objective function 1

EIeq
for different

Fig. 5 Pareto surface for the unit cell length of 17.78 mm (case 8.1)
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length of unit cells. Figure 7 shows that the out of plane com-
pliance of the corrugated core with elastomeric coating de-
creases as the length of the corrugation unit cell increases.
For a corrugated panel with a fixed length, as the length of
the corrugation unit cells decreases the number of unit cells
and consequently the number of corrugations increases. Thus
the number of corners of a corrugated unit cell increases in the
whole panel, as the corrugation unit cell gets smaller. These
corners or corrugation lines which act like joints with torsional
stiffness have the main role in the mechanism of deformation
of corrugated structures. Hence the increase in the number of
corrugation corners leads to more out of plane compliance of
the panel. The minimum value for the out of plane compli-
ance, which is obtained at Luc = 40mm, is equal to
1.15×10− 5(N.mm)‐ 2 as reported in the zoomed region pro-
vided in Fig. 7.

Figure 8 shows the trend of the second optimized objective
function EAeq for different lengths of unit cell. The in plane
stiffness of the corrugated core with elastomeric coating

decreases as the length of the corrugation unit cell reduces.
The minimum value for the in plane stiffness which is obtain-
ed at Luc=5mm is equal to 139.5N as reported in the zoomed
region provided in Fig. 8. With the same analogy the observed
trend can be explained. As the corrugation unit cell gets small-
er the number of corrugation lines increase in the whole panel
and leads to more in-plane flexibility.

Comparing Figs. 7 and 8 suggests that the in plane and out
of plane stiffness of the corrugated panel are correlated. In
other words minimizing the in plane stiffness is conflicting
with maximizing the out of plane stiffness. Figure 9 illustrates
the linear behavior between the optimized in-plane stiffness
and out of plane stiffness. This plot justifies the Fig. 3 in which

two objective functions 1
EIeq

and EAeq were combined into a

single objective function EAeq

EIeq
. The slope of the plot is about

0.21 (mm)−2, which is in the range of values illustrated in
Fig. 3 which were obtained by the GA multi objective opti-
mization. The interesting point here is that although the trend

Fig. 6 Pareto surface for the unit cell length of 5.33 mm (cases [4.6, 5.5, 9.3, 14.2])

Table 3 Optimized properties of the best compromise points for the unit cell length of 17.78 mm (case 8.1) and the unit cell length of 5.33 mm (cases
[4.6, 5.5, 9.3, 14.2])

Configuration of FishBAC
stringers
and corrugation unit cells

Weights Real values of objectives Optimized parameters

w1 w2 w3 1

EIeq
N:mm2
� �‐1

EAeq

Nð Þ
Mass of skin
(g)

tc
(mm)

te
(mm)

a1
(mm)

a2
(mm)

a3
(mm)

h
(mm)

LUC= 17.78 (mm) 0.35 0.33 0.32 1.2*10−4 1945 6.30 0.51 0.30 3.72 1.49 3.68 4.69

LUC= 5.33 (mm) 0.40 0.36 0.24 1.3*10−4 152.5 2.49 0.09 0.19 0.90 0.91 0.86 4.69
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of both objectives in Figs. 7 and 8 are smooth the trend for the
combination of them is non-smooth about EIeq equivalent to
5000(N.mm)2. The small jump in Fig. 9 may be explained by
considering the domain of changes of parameters that gets
smaller as the length of corrugation unit cells decrease as
shown in Table 2. In other words the bounds for the points
in Fig. 9 with EIeq≤5000 make the domain of parameters
tighter in contrast to the rest of points and hence they have
different linear trend.

Figure 10 shows the trend of the third optimized objective
function “mass” for different lengths of unit cell. The trend
implies that, for all configurations of FishBAC stringers and
corrugation unit cells, reducing the length of the unit cells
decreases the mass of skin. The small jump in Fig. 10 is be-
cause the optimization algorithm has minimized the parame-
ters tc and te in a different way. As indicated in Table 4 the
thickness of the core tc attains the lower bound for the points
with unit cell length less than 14.55 mm while for the points

Fig. 7 The trend of optimized
objective function 1

EIeq
for

different lengths of unit cell

Fig. 8 The trend of optimized
objective function EAeq for
different lengths of unit cell
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with a unit cell length of more than 16mm the thickness of the
elastomer coating te has attained the lower bound.

Table 4 presents the optimized parameters and objectives of
four points in the vicinity of the jump as highlighted in Fig. 10.
The indices “lb” and “ub” represents the upper bound and
lower bound of optimized parameters respectively. The opti-
mization algorithm has also selected the corresponding values
at the lower bound for the parameter a2, while for the

parameter h the upper bound is selected. This implies that
increasing the height of the corrugation gives a higher ratio
of bending stiffness to tensile stiffness.

Figure 11 shows the upper bounds, lower bounds and the
trend of optimized parameter tc and te for different lengths of
unit cell. As illustrated in Fig. 11a the thickness of the corru-
gated core tc, increases as the length of unit cells increases. As
mentioned earlier, this ascending trend can be considered as

Fig. 9 The linear behaviour
between the optimized in-plane
stiffness and out of plane stiffness

Fig. 10 The trend of optimized
objective function “Mass” for
different lengths of unit cell
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two phases. In the first phase, which is for unit cell lengths less
than 14.55 mm, the parameter tc has reached the lower bound
in the optimization process. In the second phase, for unit cell
lengths of more than 16 mm, the parameter tc is optimized
without approaching the bounds. The constant slopes in these
two phases in Fig. 11a expresses that the ratio between the
thickness of the core and the length of unit cell, tc

Luc
reaches a

constant value in each phase. This constant value in the first
phase is because of the optimization process which has select-
ed the lower bound with a constant slope for the thickness of
the corrugated core. However the value of tc

Luc
in the second

phase, which is almost equal to 0.0275, is independent of the
constant slopes of the bounds and implies that the optimized
thickness of the core is linearly proportional to the length of
unit cell. Moreover, Fig. 11b reveals that the thickness of the
elastomer coating te, increases as the length of unit cells in-
creases in both phases independently. In the first phase, for
unit cell lengths less than 14.55 mm, the parameter te is opti-
mized without approaching the bounds. In the second phase

which, for unit cell lengths more than 16 mm, the parameter te
attains the lower bound in the optimization process and hence
has a constant value of te

Luc
.

Figure 12 shows the upper bounds, lower bounds and the
trend of parameters a1, a2 and a3 as a function of the length of
the corrugation unit cell. The parameters a1 and a3 which
represent the horizontal members of the corrugation geometry
show a very close correlation as they are optimized. This
means that there is a possibility of defining the geometry of
corrugation with three parameters rather than four and it is
likely to save more computation costs in future optimization
studies. The ascending trend of parameters a1 and a3 can be
considered in two phases. The first phase corresponding to the
unit cell length smaller than 6.67 mm, is when the parameter
a2 has a descending trend, before reaching the lower bound.
However in the second phase, which corresponds to a unit cell
length of more than 6.67 mm, the parameter a2 attains the
lower bound which changes the descending trend into an as-
cending trend. The constant slope of the trends of the

Table 4 The optimized parameters and objectives for four points in the vicinity of the jump highlighted in Fig. 10

Luc (mm) Real values of objectives Optimized parameters

1

EIeq
N:mm2
� �‐1

EAeq

Nð Þ
Mass of
skin (g)

tc (mm) te (mm) a1 (mm) a2 (mm) a3 (mm) h (mm)

13.33 2.47*10−4 789.03 5.63 0.22lb 0.76 2.81 1.11lb 2.74 4.69ub
14.55 2.05*10−4 950.00 6.31 0.24lb 0.90 3.06 1.21lb 3.01 4.69ub
16 1.61*10−4 1479.42 5.91 0.46 0.27lb 3.33 1.33lb 3.33 4.69ub
17.78 1.21*10−4 1944.93 6.30 0.51 0.30lb 3.73 1.48lb 3.68 4.69ub

Fig. 11 Thickness of the corrugated core and the elastomeric coatings for different length of unit cells
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parameters a1 and a3 expresses the ratio of these parameters to
the length of unit cells. The ratio of a1

Luc
and a3

Luc
in the first phase,

where parameter a2 has not reached the lower bound, is about
0.39. The slope of the trend of parameter a2 is about −0.31 in
the first phase which implies an inverse relationship between
parameters a2 and Luc. However in the second phase, the con-
straint a1 + a2 + a3 = Lhu and the approximate equivalence
a1≈a3 explains the constant slope of parameters a1 and a3,

which is because the parameter a2 has hit the lower bound
with a constant slope of 0.167.

For the parameter h, which represents the height of the
corrugation, the optimization algorithm has selected values
at the upper bound. In many cases the optimization algorithm
has selected the corresponding values at the lower bound for
the parameter a2 which implies that maximizing the angle of
corrugation would result in a higher ratio of bending stiffness

Fig. 12 The upper bounds, lower
bounds and the trend of
parameters a1, a2 and a3 as a
function of the length of
corrugation unit cell

Fig. 13 The optimized tan(θ) as a
function of the length of the unit
cell
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to tensile stiffness. Figure 13 shows the optimized tan(θ) as a
function of the length of the unit cell.

In terms of design, the trend of the three optimized objec-
tives at the best compromise points for the entire range of
configurations of FishBAC stringers and corrugation unit cells
are illustrated together in Fig. 14b. The design decision was
made by repeating the process of finding the best compromise
point among the optimized solutions in the normalized space
of objectives. Figure 14a shows the distance of the best com-
promise points of different unit cell lengths to the ideal refer-
ence point presented in (2).

The decision point of the best design is highlighted as red
in Fig. 14. However it must bementioned that this point would
be different if more importance is given to certain objective
functions such as the in-plane compliance of the corrugated
skin which reduces the required energy to morph. Table 5
shows the corresponding objective values and parameters at
the decision point of the design. According to the Table 5 the
length of a corrugation unit cell at the decision point is
10.67 mm. Consequently all of the configurations of
FishBAC stringers and corrugation unit cells which are com-
patible in the equation of (nstringer+1)×Nunitcell=15 represent
the highlighted decision point, i.e. cases 4.3, 5.2 and 14.1.

Although these cases have the same geometry of the skin,
the number of the stringers of the FishBAC internal structure
is different and hence the structural and aerodynamic charac-
teristics of the assembled structure will be different. It is also
possible to consider variable spacing of the stringers for the
selected geometry of the skin. However such optimization and
analysis are beyond the scope of this paper.

5 Conclusion

Morphing technology is necessary in the design of fu-
ture aircraft as it provides the opportunity for the air-
craft to adapt its shape in flight to the optimal config-
uration without unacceptable penalties in terms of cost,
complexity and weight. Morphing technology increase
the efficiency of aircraft in terms of fuel consumption,
toxic emissions, noise pollution and maneuverability of
the aircraft. However the requirements of morphing air-
craft are conflicting from the structural perspective. For
instance the design of a proper morphing skin is a huge
challenge and a key issue since it must be stiff to with-
stand the aerodynamic loads, but flexible to enable the
expected large shape changes. Corrugated sheets have
remarkable anisotropic characteristics. As a candidate
skin for a morphing wing, they are stiff to withstand
the aerodynamic loads and flexible to enable the
morphing deformations. In this paper the geometric pa-
rameters of the trapezoidal corrugated core with elasto-
meric coating are optimized to minimize the in-plane
stiffness and the mass of the skin and to maximize the
out-of-plane stiffness of the skin. To do so the equiva-
lent tensile, flexural stiffness and the mass of a coated
trapezoidal corrugated core were first calculated using a
finite element code in MATLAB. Bearing in mind the

Fig. 14 Entire best compromise points for different length of unit cells

Table 5 Corresponding optimized parameters at the decision point of
the design

Optimized objective functions Optimized parameters (mm)

1

EIeq
N:mm2
� �‐1

EAeq(N) Mass of
skin (g)

tc te a1 a2 a3 h

3.9*10−4 500.40 4.29 0.18 0.51 2.26 0.89 2.20 4.69
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manufacturing limitations, different possible configura-
tions of FishBAC stringers and corrugated skin were
considered in the optimization problem. The upper
bounds and the lower bounds of the geometric parame-
ters of the corrugation were chosen carefully based on
practical considerations, especially when the size of the
corrugation was very small. The entire set of parameters
of the corrugation were normalized in order to ensure
the best performance of the optimization scheme. The
advantages and limitations of the gradient based aggre-
gate and the GA multi-objective method were investi-
gated for solving the multi objective optimization prob-
lem for the corrugated skin. The results obtained from
both methods were compared and finally the gradient
based aggregate method was utilized in this paper. The
dominance of each objective function due to the weight
distribution in this method was discussed and highlight-
ed on the Pareto surface of two sample cases.
Moreover, by identifying the ideal reference point as
the coordinates of minimum normalized objective
values, the best compromise point was selected in each
configuration of FishBAC stringers and corrugation unit
cells. The range of the weights showed that all of the
three objectives were involved efficiently in the process
of optimization for the best compromise point. The
trend of the optimized parameters and objectives were
then investigated by collecting and studying the best
compromise points in all the configurations of
FishBAC stringers and corrugation unit cells. It was
shown that the out of plane and in-plane compliances
of the corrugated core with elastomeric coating de-
creased when the length of the corrugation unit cell
increased. For almost all configurations of FishBAC
stringers and corrugation unit cells, reducing the length
of the unit cells decreased the mass of the skin. In
terms of the trends of the optimized geometric parame-
ters, it was shown that the thickness of the core attained
the lower bound for the points with a unit cell length
less than 14.55 mm, while for a unit cell length more
than 16 mm the thickness of the elastomer coating
reached the lower bound. This switch in the way that
the optimization algorithm optimized these two parame-
ters resulted in a small jump in the trend of objective
function values. Moreover, the optimization algorithm
selected the corresponding values at the lower bound
for the parameter a2, while for the parameter h the
upper bound was selected, implying that increasing the
height of the corrugation gives a higher ratio of bending
stiffness to tensile stiffness. Finally, the design decision
was made by repeating the process of finding the best
compromise point among the optimized solutions in a
normalized space of objectives. The length of a corrugation
unit cell at the decision point was 10.67 mm and hence several

configurations of FishBAC stringers and corrugation unit cells
were compatible with the highlighted decision point, i.e. cases
4.3, 5.2 and 14.1.
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