1,152 research outputs found

    Galaxies into the Dark Ages

    Get PDF
    We consider the capabilities of current and future large facilities operating at 2\,mm to 3\,mm wavelength to detect and image the [CII] 158\,μ\mum line from galaxies into the cosmic "dark ages" (z∼10z \sim 10 to 20). The [CII] line may prove to be a powerful tool in determining spectroscopic redshifts, and galaxy dynamics, for the first galaxies. We emphasize that the nature, and even existence, of such extreme redshift galaxies, remains at the frontier of open questions in galaxy formation. In 40\,hr, ALMA has the sensitivity to detect the integrated [CII] line emission from a moderate metallicity, active star-forming galaxy [ZA=0.2 Z⊙Z_A = 0.2\,Z_{\odot}; star formation rate (SFR) = 5\,M⊙M_\odot\,yr−1^{-1}], at z=10z = 10 at a significance of 6σ\sigma. The next-generation Very Large Array (ngVLA) will detect the integrated [CII] line emission from a Milky-Way like star formation rate galaxy (ZA=0.2 Z⊙Z_{A} = 0.2\,Z_{\odot}, SFR = 1\,M⊙M_\odot\,yr−1^{-1}), at z=15z = 15 at a significance of 6σ\sigma. Imaging simulations show that the ngVLA can determine rotation dynamics for active star-forming galaxies at z∼15z \sim 15, if they exist. Based on our very limited knowledge of the extreme redshift Universe, we calculate the count rate in blind, volumetric surveys for [CII] emission at z∼10z \sim 10 to 20. The detection rates in blind surveys will be slow (of order unity per 40\,hr pointing). However, the observations are well suited to commensal searches. We compare [CII] with the [OIII] 88μ\mum line, and other ancillary information in high zz galaxies that would aid these studies.Comment: 11pages, 8 figures, Accepted for the Astrophysical Journa

    Structural issues in active rule systems

    Get PDF

    Science with an ngVLA

    Get PDF

    [CII] 158μm Emission from z ≥ 10 Galaxies

    Get PDF

    [CII] 158μm Emission from z ≥ 10 Galaxies

    Get PDF

    [CII] 158μm Emission from z ≥ 10 Galaxies

    Get PDF

    Simulating high-redshift galaxies

    Get PDF
    Recent observations have gathered a considerable sample of high redshift galaxy candidates and determined the evolution of their luminosity function (LF). To interpret these findings, we use cosmological SPH simulations including, in addition to standard physical processes, a detailed treatment of the Pop III-Pop II transition in early objects. The simulated high-z galaxies match remarkably well the amplitude and slope of the observed LF in the redshift range 5<z<10. The LF shifts towards fainter luminosities with increasing redshift, while its faint-end slope keeps an almost constant value, \alpha ~-2. The stellar populations of high-z galaxies have ages of 100-300 (40-130) Myr at z=5 (z=7-8), implying an early (z>9.4) start of their star formation activity; the specific star formation rate is almost independent of galactic stellar mass. These objects are enriched rapidly with metals and galaxies identified by HST/WFC3 (M_UV < -18) show metallicities ~0.1 Zsun even at z=7-8. Most of the simulated galaxies at z~7 (noticeably the smallest ones) are virtually dust-free, and none of them has an extinction larger than E(B-V) = 0.01. The bulk (50%) of the ionizing photons is produced by objects populating the faint-end of the LF (M_UV < -16), which JWST will resolve up to z=7.3. PopIII stars continue to form essentially at all redshifts; however, at z=6 (z=10) the contribution of Pop III stars to the total galactic luminosity is always less than 5% for M_UV < -17 (M_UV < -16). The typical high-z galaxies closely resemble the GRB host galaxy population observed at lower redshifts, strongly encouraging the use of GRBs to detect the first galaxies.Comment: 14 pages, 10 figures, MNRAS in pres

    Hubble Space Telescope FUV Spectra of the Post-Common-Envelope Hyades Binary V471 Tauri

    Get PDF
    We have carried out an analysis of the HST STIS archival spectra of the magnetic white dwarf in the Hyades eclipsing-spectroscopic, post-common envelope binary V471 Tauri, time resolved on the orbit and on the X-ray rotational phase of the magnetic white dwarf. An HST STIS spectrum obtained during primary eclipse reveals a host of transition region/chromospheric emission features including N V (1238, 1242), Si IV (1393, 1402), C IV (1548, 1550) and He II (1640). The spectroscopic characteristics and emission line fluxes of the transition region/chromosphere of the very active, rapidly rotating, K2V component of V471 Tauri, are compared with the emission characteristics of fast rotating K dwarfs in young open clusters. We have detected a number of absorption features associated with metals accreted onto the photosphere of the magnetic white dwarf from which we derive radial velocities. All of the absorption features are modulated on the 555s rotation period of the white dwarf with maximum line strength at rotational phase 0.0 when the primary magnetic accretion region is facing the observer. The photospheric absorption features show no clear evidence of Zeeman splitting and no evidence of a correlation between their variations in strength and orbital phase. We report clear evidence of a secondary accretion pole. We derive C and Si abundances from the Si IV and C III features. All other absorption lines are either interstellar or associated with a region above the white dwarf and/or with coronal mass ejection events illuminated as they pass in front of the white dwarf.Comment: The Astrophysical Journal, May 10, 2012 issue - 16 figure
    • …
    corecore