19,935 research outputs found

    OPERATIONS - FLIGHT CREW REQUIREMENTS

    Get PDF
    Flight simulation in crew training - manned space fligh

    Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order

    Get PDF
    A finite-element model of liquid-crystal hydrodynamics based on the Qian and Sheng formulation has been developed. This formulation is a generalization of the Ericksen-Leslie theory to include variations in the order parameter, allowing for a proper description of disclinations. The present implementation is well suited to treat properly the various length scales necessary to model large regions yet resolve the rapid variations in the order parameter in proximity to disclinations

    Modeling of weak anisotropic anchoring of nematic liquid crystals in the Landau-de Gennes theory

    Get PDF
    The anisotropic anchoring effect of a treated solid surface on a nematic liquid crystal is described in the Landau-de Gennes theory using a power expansion on the tensor-order parameter and two mutually orthogonal unit vectors. The expression has three degrees of freedom, allowing for independent assignment of polar and azimuthal anchoring strengths and a preferred value of the surface-order parameter. It is shown that in the limit for a uniaxial constant-order parameter, the expression simplifies to the anisotropic generalization of the Rapini-Papoular anchoring energy density proposed by Zhao et al. Experimentally measurable values with a physical meaning in the Oseen-Frank theory can be scaled and assigned to the scalar coefficients of the tensor-order-parameter expansion. Results of numerical experiments comparing the anchoring according to the study of Zhao et al. in the Oseen-Frank theory and the power expansion in the Landau-de Gennes theory are presented and shown to agree well

    Is simultaneous yy and ξ\xi--scaling in the quasi-elastic region accidental?

    Full text link
    We study the yy and ξ\xi--scaling of the nuclear response at large momentum transfer in order to understand how scaling based on very different descriptions of the elementary interaction can occur simultaneously. We find that the approximate validity of ξ\xi-scaling at low energy loss arises from the coincidental behavior of the quasielastic and deep inelastic cross sections.Comment: 4 pages, 3 Postscript figure

    Alternative determinism principle for topological analysis of chaos

    Full text link
    The topological analysis of chaos based on a knot-theoretic characterization of unstable periodic orbits has proved a powerful method, however knot theory can only be applied to three-dimensional systems. Still, the core principles upon which this approach is built, determinism and continuity, apply in any dimension. We propose an alternative framework in which these principles are enforced on triangulated surfaces rather than curves and show that in dimension three our approach numerically predicts the correct topological entropies for periodic orbits of the horseshoe map.Comment: Accepted for publication as Rapid Communication in Physical Review

    High Density Mesoscopic Atom Clouds in a Holographic Atom Trap

    Full text link
    We demonstrate the production of micron-sized high density atom clouds of interest for meso- scopic quantum information processing. We evaporate atoms from 60 microK, 3x10^14 atoms/cm^3 samples contained in a highly anisotropic optical lattice formed by interfering di racted beams from a holographic phase plate. After evaporating to 1 microK by lowering the con ning potential, in less than a second the atom density reduces to 8x10^13 cm^- 3 at a phase space density approaching unity. Adiabatic recompression of the atoms then increases the density to levels in excess of 1x10^15 cm^-3. The resulting clouds are typically 8 microns in the longest dimension. Such samples are small enough to enable mesoscopic quantum manipulation using Rydberg blockade and have the high densities required to investigate new collision phenomena.Comment: 4 pages, 4 figures, submitted to PR

    Theory of the high-frequency chiral optical response in a p_x+ip_y superconductor

    Full text link
    The optical Hall conductivity and the polar Kerr angle are calculated as functions of temperature for a two-dimensional chiral p_x+ip_y superconductor, where the time-reversal symmetry is spontaneously broken. The theoretical estimate for the polar Kerr angle agrees by the order of magnitude with the recent experimental measurement in Sr2RuO4 by Xia et al. cond-mat/0607539. The theory predicts that the Kerr angle is proportional to the square of the superconducting energy gap and is inversely proportional to the cube of frequency, which can be verified experimentally.Comment: 4 pages, no figures, RevTeX. V.2: one reference and discussion of horizontal lines of nodes added. V.3: a typo corrected, and one reference added. V.4: two references added and minor stylistic changes made, as in the published versio
    corecore