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Finite-Element Modeling of Liquid-Crystal
Hydrodynamics With a Variable Degree of Order

Richard James, Eero Willman, F. Aníbal Fernández, Member, IEEE, and Sally E. Day, Member, IEEE

Abstract—A finite-element model of liquid-crystal hydrody-
namics based on the Qian and Sheng formulation has been devel-
oped. This formulation is a generalization of the Ericksen–Leslie
theory to include variations in the order parameter, allowing for
a proper description of disclinations. The present implementation
is well suited to treat properly the various length scales necessary
to model large regions yet resolve the rapid variations in the order
parameter in proximity to disclinations.

Index Terms—Finite elements, liquid-crystal (LC) modeling,
variable order parameter.

I. INTRODUCTION

IN COMMON liquid-crystal (LC) structures, relaxation dy-
namics can be greatly affected by the flow of LC. In fact,

the (back) flow immediately after a holding voltage is removed
can cause molecules to tilt further and accelerate the subsequent
relaxation to a homogeneous state [1]. Ericksen–Leslie theory
[2], [3] has been applied to the study of backflow with much
success. In this theory, the orientation of LC is represented by a
director field, and, thus, the equations are restricted to a uniaxial
state with a constant degree of order.

However, when high holding voltages are applied, the or-
der parameter drops, and the biaxial ordering increases near
the alignment layers [4]. Similarly, these effects occur in the
vicinity of disclinations. The Qian and Sheng formulation [4] is
a generalization of the Ericksen–Leslie theory that takes such
changes into account. Instead of representing the molecular
orientation by directors, the Q tensor, which is a rank-two
symmetric tensor, is used. The Beris–Edwards equations [5]
are a similar generalization but consider only two viscosity
coefficients. Furthermore, the viscosity coefficients in the Qian
and Sheng formulation can be obtained directly from the
Ericksen–Leslie coefficients, which is the standard means to
characterize LCs.

The effect of hydrodynamics on the movement of disclina-
tion lines has been investigated by Tóth et al. [6] and Sven̆sek
and Z̆umer [7]. Tóth et al. use a lattice Boltzmann Algorithm to
approximate the Beris-Edwards equations. Sven̆sek and Z̆umer
use a finite-difference discretization of the Qian and Sheng
equations. Similar discretizations of these governing equations
can be found in [8] and [9].
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A fine mesh is required to account for steep gradients of the
order parameter in proximity to disclinations, which severely
limits the time step particularly in the case of explicit methods.
An implicit time-integration scheme is used here to alleviate
this problem. Using the finite elements with an adaptive mesh-
ing scheme, the mesh density can be concentrated about discli-
nations, affording significant savings in terms of the number of
degrees of freedom compared to the traditional finite-difference
methods.

This paper details a finite-element implementation of the
Qian and Sheng equations. An approach to obtain the steady
state Q-tensor field is outlined and then generalized for the
dynamic case, including the flow-induced reorientation of the
LC. The flow of the LC is found by solving a weak form of
the Navier–Stokes equation. Finally, the model is validated with
previously published results; specifically, the pair annihilation
of ±1/2 disclination lines.

II. Q-TENSOR STATICS

In this section, a formulation for the steady state Q-tensor
field is derived from the governing equations. A convergence
analysis of these equations is given in [10]. The Landau-de
Gennes (LdG) free energy functional [11], [12] is defined as

F(Q) :=FD(∂Q) + FB(Q)−FE(Q) + FS(Q)

=
∫
Ω

{fD(∂Q) + fB(Q)− fE(Q)}+
∫
Γ

{fS(Q)}

where Ω is an open bounded subset of R3 with boundary
Γ, and Q is as those in [4] and [13]. The free-energy densities,
fB(Q), and fD(∂Q) are due to bulk and elastic contributions,
respectively, and fS(Q) is the surface free-energy density.
Reorientation of the LC is induced by an applied electric field,
and, thus, a linear term fE(Q), which is the electrostatic energy
density, is also included.

The bulk free-energy density determines the state of the LC,
be it uniaxial or biaxial nematic or isotropic. It can be written
as an expansion in the scalar invariants of the Q tensor about
the nematic–isotropic transition, truncated to include at most
fourth-order terms:

fB(Q) :=
1
2
A tr(Q2) +

1
3
B tr(Q3) +

1
4
C tr(Q2)2 (1)

where A, B, and C are the material bulk constants [11]. The
truncation used is sufficient to describe the Q-tensor field due
to a disclination: a biaxial arrangement of uniaxial molecules
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lying in a ring about the disclination core [14]. More general
densities include higher order terms and allow such states as
the bulk biaxial phase [11].

The distortion energy density is quadratic in the gradients of
the Q tensor

fD(∂Q) :=
1
2
L1Qαβ,γQαβ,γ +

1
2
L2Qαβ,βQαγ,γ . (2)

For simplicity of presentation, the splay-bend anisotropy and
chiral terms [13] have been omitted from this description.

To describe weak surface anchoring, a simple penaltylike
method can be used to enforce alignment

fS(Q) :=
1
2
W tr

(
(Q−Q0)2

)

where Q0 is the prescribed Q tensor on the boundary, and W
is the anchoring strength. A more advanced form is used in
our model, with a different penalty associated with azimuthal
and zenithal deformations, given by an expansion in the com-
ponents of the Q tensor.

The electrostatic energy is linear in the components of the Q
tensor and is written in terms of the electric field 
E

fE(Q) :=
1
2
ε0( 
E · ¯̄ε · 
E).

In order to solve these equations, the symmetry and zero trace
of the Q tensor should be maintained. This can be achieved by
several means. Lagrange multipliers can be used to enforce the
condition, expanding the solution vector. This expansion can be
avoided using a penalty method, but, still, all nine components
of the Q tensor would have to be found. If an explicit time-
stepping procedure is employed, these complications can be
avoided by projecting the Q-tensor field onto a traceless and
symmetric subspace at each step [7]. Most efficiently, Q can be
written in terms of a five-dimensional subspace, defined by an
orthonormal basis [15]

Q = qiTi. (3)

There are many possible choices for the basis tensors Ti; we
use one from [15]. This choice maintains the symmetry and the
zero trace of the Q tensor and enables us to calculate the steady
state or dynamic solutions

T1 = (3êzêz − I)/
√

6

T2 = (êxêx − êyêy)/
√

2

T3 = (êxêy + êyêx)/
√

2

T4 = (êxêz + êz êx)/
√

2

T5 = (êyêz + êz êy)/
√

2

where êx, êy , and êz are unit vectors along x, y, and z. T1

describes changes in the order parameter; T2 describes the
changes in the biaxiality, and T3, T4, and T5 correspond
to rotations [16]. Due to the normalization, the basis tensors

satisfy the orthogonality condition: tr(TiTj) = δij . From (1)
and (3)

fB =
A

2
qkqk +

C

4
(qkqk)2 +

B

2
√

2

[
q2

(
q24 − q25

)
+ 2q3q4q5

]

+
B

6
√

6
q1

[
2q21 + 3

(
q24 + q25 − 2q22 − 2q23

)]
. (4)

From (2) and (3), and considering, for brevity, a two-
dimensional problem oriented in the x−z plane, the elastic
energy can be reexpressed as

fD =
L1

2
qk,αqk,α +

L2

4

[
q22,x + q23,x + q24,x + q24,z + q25,z

]

+
L2

12

[
q21,x + 4q21,z + 6q2,xq4,z + 6q3,xq5,z

]

+
L2

2
√

3
[2q1,zq4,x − q1,x(q2,x + q4,z)] . (5)

The final step in the procedure is to represent the Q-tensor
components qk and the potential u ( 
E = −∇u) as a linear com-
bination of shape functions (interpolation functions, piecewise
polynomials) with amplitude coefficients chosen to approxi-
mate qk and u. It is advantageous to use second-order shape
functions in both cases. The asymptotic error is of fourth order
as opposed to second order for the first-order elements, giving
a better accuracy for a given number of nodes. In each element,
the discretized form of qk and u can be written

qk =
N∑

i=1

qi
kφ

i, u =
N∑

i=1

uiφi

where N is the number of nodes in the element, φi is the
shape function, and qi

k and ui are the amplitude coefficients to
be found. Instead of directly minimizing the LdG free-energy
functional, the computationally simpler task of seeking the Q-
tensor field that renders the functional stationary is performed

∂F
∂qi

k

= 0. (6)

In order to determine the matrix form, a solution vector q =
{qi

k} is introduced containing the values of all five Q-tensor
components at each node. The nonlinear system (6) takes
the form [K + B(q)]q = g, which can be solved using the
Newton–Raphson method for ∆q = qm+1 − qm, where m
denotes the iteration number, leading to

[K + J(qm)] ∆q = g − [K + B(qm)]qm. (7)

K contains terms independent of q arising from the distortion
and surface energies, and the terms depending on q from
the bulk energy are grouped in B. The vector g comes from
the electrostatic energy density. At each iteration, there is an
overhead associated with the assembly of the Jacobian matrix
J, which is defined as

Jij =
∂(Bikqk)
∂qj

.
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Iterations are performed until ‖∆q‖ < ζ for a given tolerance
ζ. Convergence can be improved by using a line search al-
gorithm; the right-hand side of (7) is scaled by a damping
factor, which can be optimally chosen by a strategy such as the
Armijo–Goldstein method [17], [18].

III. ELECTRIC POTENTIAL

To solve for the electric potential, an estimation of the
permittivity of the LC medium is required in terms of Q

εαβ = ε⊥δαβ + ∆ε
(

2
3S1

Qαβ +
1
3
δαβ

)
.

∆ε is the dielectric anisotropy, and ε⊥ is the permittivity in
the direction perpendicular to the long axis of the molecule.
In the uniaxial state, Q is defined as S1(3n̂n̂− I)/2, where
n̂ is the director, and S1 is the equilibrium value of the order
parameter, which can be found from the stationary value of fB ,
giving S1 = (−B +

√
B2 − 24AC)/(6C). The polarizability

of the LC is neglected in this description, however, the inclusion
complicates the model only slightly.

The electric field is calculated from the potential u, found by
solving the weak form of Laplace’s equation

∫
Ω

{
u,βεαβφ

i
,α

}
−

∫
ΓN

{
ηαu,β(εαβ + δαβ)φi

}
= 0.

The additional boundary integral over ΓN is necessary to obtain
the desired Neumann boundary condition: η̂ · ∇u = 0, where η̂
is normal to the boundary. The expression above can be written
in matrix form as

Su = b. (8)

IV. Q-TENSOR DYNAMICS

The dynamics of LC switching are not merely governed by
electric and elastic forces; reorientation of the LC is influenced
by its flow. To obtain the dynamic solution, the weak form is
supplemented with a term that accounts for both effects

∂F
∂Qi

αβ

+
∫
Ω

{Hαβφ
i} = 0 (9)

with Hαβ = (1/2)µ2Aαβ + µ1Nαβ and Aαβ = (1/2)(∂αvβ +
∂βvα), where vα is the velocity field, µ1 and µ2 are viscos-
ity coefficients, andNαβ = dQαβ/dt+WαµQµβ −QαµWµβ .
The total time-derivative operator is defined as d/dt = (∂/∂t+

v · ∇) and Wαβ = (1/2)(∂αvβ − ∂βvα). To obtain the weak
form in terms of qk, (9) can be written as

∂F
∂qi

k

+
∫
Ω

{
tr(TkH)φi

}
= 0.

Numerical integration in time is performed using the
Crank–Nicholson method. Due to the nonlinearity of the gov-
erning equations, Newton iterations are performed within each

time step. Using n to denote the time step andm for the iteration
number, the matrix form can be written as
[

2µ1

∆t
M + K + J

(
qm

n+1

)]
∆qn+1 = µ1M

[
2

∆t
qn + q̇n

]

+ gn+1 −
[

2µ1

∆t
M + K + B

(
qm

n+1

)]
qm

n+1. (10)

The right-hand side is written in terms of the solution at the
last time step, q̇ = ∂q/∂t, and this form provides damping of
roundoff errors [19], [20]. The matrix M is

∫
Ω{φiφj}. g is

made up of g and velocity terms from A; K comprises K and
velocity terms from W (which renders K asymmetric). Here,
g, K, and B are as used in Section II.

V. FLOW FORMULATION

In this section, a finite-element discretization of the
velocity–pressure form of the incompressible Navier–Stokes
equation is described. The momentum equation, which is writ-
ten in terms of a generalized stress tensor σ, is

ρ
dvα

dt
= ∂β

(
−pδβα + σd

βα + σe
βα + σv

βα

)
. (11)

The pressure field p is such that it satisfies the continuity
equation, acting as a Lagrange multiplier to enforce the incom-
pressibility of the fluid

∂µvµ = 0.

There are several contributions to the overall stress tensor: σv
αβ

is the viscous stress; σe
αβ is the electric field-induced stress; and

σd
αβ is the distortion stress

σv
αβ = β1QαβQµνAµν + β4Aαβ + β5QαµAµβ + β6QβµAµα

+
1
2
µ2Nαβ − µ1QαµNµβ + µ1QβµNµα.

The viscosity coefficients {µ1, µ2, β1, β4, β5, β6} can be ob-
tained from the Ericksen–Leslie coefficients {α1, α2, . . . , α6}
using the mappings given in [13] and [4]. The expression for
the electric field-induced stress tensor is simplified assuming
that LC is incompressible

σe
αβ = DαEβ −

1
2
DµEµδαβ

where 
D is the electric displacement. The distortion stress is
given by

σd
αβ = − ∂fD

∂(Qµν,α)
Qµν,β .

The weak form is obtained taking a Galerkin approach, giving
a set of three coupled equations for the x, y, and z components
of the velocity
∫
Ω

{
ρφi dvα

dt

}
=

∫
Ω

{
φi∂β

(
−pδβα + σd

βα + σe
βα + σv

βα

)}
.
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The shape functions here are the same second-order functions
used to represent the Q-tensor components. Similarly, for the
pressure

∫
Ω

{ψi∂µvµ} = 0.

A different set of shape functions ψ of lower order are used for
the pressure. If they are of the same order as those for the veloc-
ity, too many constraints are placed upon the velocity, leading to
oscillatory solutions for the pressure [20]. An alternative to this
mixed interpolation procedure is using a formulation stabilized
by the inclusion of damping terms.

The momentum equation is integrated by parts, yielding

∫
Ω

{
ρφi dvα

dt

}
= −

∫
Ω

{
φi

,β

(
−pδβα + σd

βα + σe
βα + σv

βα

)}
.

The surface terms that arise from the integration are set to zero,
leading to the natural boundary condition

ηβ

(
−pδβα + σd

βα + σe
βα + σv

βα

)
= 0

for the velocity components. For nonslip or periodic bound-
aries, this surface term can be neglected, but if any part of
the boundary remains free, then, this boundary integral should
be modified appropriately. No pressure boundary condition is
implied in the above formulation; the pressure at the boundary
merely satisfies the incompressibility condition as required.

The use of a numerical-integration scheme allows some
simplification of these expressions. The weak form of the
momentum equation can be rearranged as

∫
Ω

{
ρφi dvα

dt
− pφi

,α + φi
,β

(
vµ,νG

αµ
βν + vµU

αµ
β + V α

β

)}
= 0

where Gαµ
βν contains the material viscosity coefficients and

the components of the Q tensor qk, and Uαµ
β is made up of

gradients in qk. V α
β contains the driving-stress components due

to the reorientation of the LC, the distortion stress, and the field-
induced stress.

For elasticity-driven dynamics of LCs, the low Reynolds-
number approximation can be made, whereby the nonlinear
advective term (
v · ∇)
v arising from the total time derivative
is neglected. An unsteadiness parameter can be defined as the
ratio of the characteristic times of Q-tensor and velocity fields
[7]. When studying disclination dynamics, the velocity field
adapts quickly to a given Q-tensor field. A small unsteadi-
ness parameter results, and the partial time derivative can be
neglected from (11). Typically, these two approximations are
valid in case of conventional cell dynamics (in the absence of
disclinations). However, in extreme cases, with large electric
fields and large container sizes, this unsteadiness parameter is
no longer small. A time-stepping procedure, such as (10), may
be used to calculate the velocity field with the pressure assumed
steady within each time step so that the incompressibility
condition holds for all time.

After discretizing the velocity and pressure using vα = vi
αφ

i

and p = piψi, the system of equations may be written in matrix
form as

(
D C
CT 0

)(
v
p

)
=

(
f1
f2

)
(12)

assuming that both the advective term and the partial time
derivative can be dropped. The submatrices D and C arise from
the terms in 
v and p, respectively. The vectors f1 and f2 arise
from V α

β and the Dirichlet boundary conditions applied to the
velocity and pressure solutions and v = {vi

α}. A scaled pres-
sure vector p is introduced to improve the condition number
of the system matrix. In the above formulation, the choice was
made to integrate the pressure term by parts, but this operation
is not essential. It has the advantage that the resultant system
matrix is symmetric, but the real difference is seen on open
boundaries. This procedure modifies the natural boundary con-
dition so that it is well posed on open boundaries. The resulting
weak form contains no derivatives of the pressure, introducing
the possibility to represent the pressure by a function that is not
C0 continuous. Improved convergence is reported in [20] using
these functions that allow the continuity equation to be satisfied
on an element-by-element basis.

Two element types have been tested: First, the P2P1 Taylor–
Hood [21] element with second-order functions for the ve-
locity components and continuous linear functions for the
pressure, and, second, the P2(P1 + P0) (as used to solve the
Ericksen–Leslie equations in [22]) with second-order functions
for the velocity components and a discontinuous linear approx-
imation for the pressure. The implementation of the later is
more complicated, and the solution vector is extended by the
number of elements in the mesh. More complicated elements,
using bubble functions, are common in the field of compu-
tational fluid dynamics, but these lead to a much expanded
solution vector and a more complex implementation. The P2P1
element was found to give a solution vector (v) differing by
‖v − v′‖∞ ≈ 10−5 compared to the P2(P1 + P0) element (v′).
This difference is not substantial, therefore, the simpler P2P1
element is used.

VI. ALGORITHM DETAILS

The equations are put into dimensionless form by introducing
a characteristic length and time scale. These parameters depend
on the bulk-energy coefficients and the elastic constants. The
characteristic length ξ, which is also referred to as the correla-
tion length, is typically a few nanometers, and the characteristic
time τ is typically tens of nanoseconds

ξ =

√
27CL1

B2
τ = µ1

ξ2

L1
.

Detailed expressions of K, B, and g have been found using
Maple, starting from

Kq =
∂FD

∂qi
k

Bq =
∂FB

∂qi
k

g =
∂FE

∂qi
k

.
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A similar procedure is used to obtain Gαµ
βν , Uαµ

β , and V α
β for

the calculation of the velocity field.
To summarize the discussions made in the previous sections,

second-order polynomials are chosen as the shape functions for
qk, u, and 
v, and linear (continuous) functions for the pressure.
Integration is performed numerically using Gauss quadrature,
opening up the possibility to use isoparametric elements, which
are better able to conform to the curved boundaries. For the
Q-tensor problem in 2D, 16 Gauss points are chosen to avoid
integration loss, giving eighth-order accuracy.

The system of (8), (10), and (12) is solved using Algorithm 1.
A time-stepping procedure for the Q tensor forms the basis for
the algorithm, and within each time step, Newton iterations are
performed to deal with the nonlinear terms, using ζ ≈ 10−6. In
each time step, the flow and the potential solutions are assumed
steady.The most time consuming part of the procedure is the
dynamic calculation of the Q tensor. An incomplete LU fac-
torization is used for preconditioning, and the resultant system
of equations is solved using a generalized minimum residual
method [23]. The execution time for the iterative method is al-
most independent of the matrix bandwidth; however, this is not
the case for the calculation of the preconditioner. Savings are
achieved by applying a bandwidth reduction technique such as
a symmetric reverse Cuthill–McKee permutation. Furthermore,
the preconditioner can be kept constant during the Newton
iterations for the Q tensor, with no significant loss of precision.

Algorithm 1 Time Stepping
1: q̇n ← 0, ∆tn ← τ
2: while t < tmax do
3: q̇n+1 ← 2q̇n − q̇n−1

4: qp
n+1 ← qn + ∆tnq̇n {predictor}

5: qn+1 ← qp
n+1

6: repeat {Iterative Loop}
7: {Pseudo-steady-state solutions for u and v}
8: compute un+1(qn+1)
9: compute vn+1(qn+1, q̇n+1,un+1)
10: {Newton iteration for Q tensor}
11: compute ∆qn+1(qn+1,qn, q̇n,un+1,vn+1)
12: qn+1 ← qn+1 + ∆qn+1

13: q̇n+1 ← (qn+1 − qn)/∆tn
14: until ‖∆qn+1‖ < ζ
15: t← t+ ∆tn
16: dn ← (qn+1 − qp

n+1)/(3(1 + ∆tn−1/∆tn))
17: ∆tn+1 ← ∆tn(ν/‖dn‖)1/3

18: n← n+ 1
19: end while

TheQ tensor is a function of the velocity and potential at step
n+ 1. Strictly speaking, two loops are required: one to ensure
consistency and the other to deal with the nonlinear terms. In
practice, since the calculation of the Q tensor is the bottleneck,
it is preferable to update the pseudosteady-state values of the
velocity and potential fields during the Newton iterations for
the Q-tensor field.

Time integration is performed by an implicit method, there-
fore, a large time step may be used. However, due to the
nonlinearity of the equations, some limit is imposed. When a

voltage is applied, the Q tensor changes rapidly and a small
time step should be used to capture the transient behavior. After
some time, as steady state is approached, a much larger time
step may be used. A variable time-stepping procedure [19], [20]
provides an effective means to calculate the dynamic behavior.
In Algorithm 1, the time-integration error is maintained below
a threshold ν by changes to the time step ∆tn. We have found
that ν ≈ 10−4 is a good compromise between computation time
and accuracy.

Changes to the order parameter not only occur on small time
scales, but length scales too. Such changes occur in proximity to
disclinations, where it is important to use a fine mesh in order to
calculate accurately the induced flow. Adaptive meshing is used
solve this problem efficiently, particularly when calculating the
motion of disclinations over large distances.

VII. VALIDATION

In this section, the results of validation tests are compared
to some previously published results [7], [14], [24] performed
using a single elastic constant approximation (L2 = 0) and the
material parameters of 4-methoxybenzylidene-4-butylanaline
(MBBA) [11], [25]

a = 8.67× 104 N/m2 · K, (T − T ∗) = −4

A = a(T − T ∗)
B = − 2.12× 106 N/m2

C = 1.74× 106 N/m2

γ1 = 0.0763 Pa · s, γ2 = −0.0787 Pa · s
α1 = 0.0065 Pa · s, α4 = 0.0832 Pa · s
α5 = 0.0463 Pa · s, α6 = −0.0344 Pa · s
k = 6 pN, ρ = 103 kg/m3.

The Q tensor and flow solver are first tested individually and
then in combination.

A. Q-Tensor Formulation Validation

The Q-tensor formulation was tested for two simple cases:
a planar and a twisted cell. Both static and dynamic director
profiles were found to agree well with the previously verified
constant-order-parameter model, based on a vectorial represen-
tation of the director [26].

To verify that the model can simulate variations of the order
parameter appropriately, it is insightful to study disclinations.
A starting director configuration with a +1/2 disclination at the
center of the modeling window was chosen, and the iterations
were performed until the Q tensor reached a steady state. Such
disclinations have been extensively studied (see, e.g., [14],
[24]). Fig. 1 shows the variation in the two order parameters
as a function of the distance (r) from the disclination core.

At the disclination core (r = 0), the two order parameters are
equal, and the LC is in the uniaxial nematic state. Encircling
the disclination core is a ring of maximal biaxiality at approx-
imately r ≈ 1 nm. For large values of r, LC is again uniaxial.
This behavior is an agreement with those in [14] and [24].
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Fig. 1. Order parameters S1 and S2 as a function of radius from the core of a
+1/2 disclination.

Fig. 2. Magnitude of the flow past a cylinder with a Reynolds number of 100.

B. Flow-Formulation Validation

The flow around a cylinder [27] and the driven cavity prob-
lem [28] have been used to test the flow formulation. Such
tests are normally performed using high Reynolds numbers
where the advective term is important, or when the flow can
no longer be assumed steady. Complications arise due to non-
linearities that, in general, can be neglected in the case of LC
flow. For the study of flow around a cylinder, the dimensions
are set according to [27], with a container size of 2.5 m ×
0.41 m. At the point (0.5, 0.2) m, a cylinder of radius 0.1 m is
centered. An isotropic liquid is considered in this benchmark
test, and, so, all viscosity coefficients are set to zero except
for β4 = 4 · 10−4 Pa · s. Nonslip conditions are applied to all
boundaries with the exception of the inflow and outflow. At
the inflow boundary, the incoming velocity is assumed to take
a quadratic form vx = 0.3 · 4y(0.41− y)/0.412, and, at the
outflow boundary, the velocity is left free, and the pressure is
set to zero. A mass density of ρ = 1.0 kg/m3 is assumed. Con-
vergence was achieved with Reynolds numbers in the region of
100, and the magnitude of the resulting flow is shown in Fig. 2.
For higher Reynolds numbers, the velocity field can no longer
be assumed steady.

C. Validation of the Combined Formulation

To test the combined formulation, we investigate the annihi-
lation of +1/2 and −1/2 disclination lines. In [7], this process
is studied for MBBA using a finite-difference discretization of
the Qian and Sheng equations.

Disclinations are positioned along the x-axis, separated by a
distance of 100 nm. Much larger separations can be modeled by

Fig. 3. Mesh for disclination-pair-annihilation problem. Ratio between the
longest and shortest triangle edge is approximately 100:1.

Fig. 4. Representation of the director profile for configuration (a) given by the
eigenvector associated with the largest eigenvalue of Q.

refining the mesh only in the vicinity of disclinations, as shown
in Fig. 3. A large time step can be used when the disclinations
are widely separated and slowly moving. However, when they
are close and moving quickly, a small time step is necessary to
follow the variations in the order parameter and flow.

There are two possible starting configurations depending on
the placement of the two disclinations:

a) as shown in Fig. 4;
b) in which the initial director field is rotated by 90◦.

The same boundary conditions are applied to all sides of
the modeling window. For the Q tensor, Neumann boundary
conditions are applied—the natural boundary condition when
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Fig. 5. Velocity field for a disclination separation of 75 nm, assuming an
isotropic fluid.

Fig. 6. Disclination position versus time for configurations (a) and (b) with
and without flow.

using a single elastic constant formulation. For the velocity
components, the nonslip condition is assumed to match the state
in the bulk of the LC. No boundary condition is required for the
pressure. Starting with v = 0, the steady-state velocity fields
arising from the individual components of the driving-stress
tensor were calculated and found to agree well with those in
[7]. Fig. 5 shows the velocity field for the complete driving-
stress tensor, for comparison with [7, Fig. 4(a)]. This field is
highly sensitive to the disclination separation.

Fig. 6 shows the disclination position versus time for the
two configurations with and without flow. This can be com-
pared with [7, Fig. 2]. The velocity field serves to speed up

preferentially the +1/2 disclination, an effect that has recently
been observed experimentally [29]. It can be noted that for both
configurations (a) and (b), the disclination path coincides in the
absence of flow.

VIII. CONCLUSION

A finite-element model of the Qian and Sheng formulation,
a generalization of the Ericksen–Leslie theory, allowing for
changes in the order of the LC, has been presented and val-
idated. The ability to adapt the mesh facilitates the modeling
of realistically sized devices while still resolving small scale
features and disclinations. This provides significant savings in
terms of the number of degrees of freedom and computational
cost in comparison to the traditional finite-difference methods.
Time integration is performed using an implicit method, thus,
additional savings are available through the use of a variable
time step in accord with the rate of change of the LC orientation.

For the problem of disclination pair annihilation, this model
agrees well with the previously published results, and the
demonstrated increase in the +1/2 disclination velocity shows
the importance of the LC flow when studying dynamic varia-
tions in the Q-tensor field.

ACKNOWLEDGMENT

The authors would like to thank Dr. D. Svenek for the helpful
discussions.

REFERENCES

[1] D. W. Berreman, “Liquid crystal twist cell dynamics and backflow,”
J. Appl. Phys., vol. 46, no. 9, pp. 3746–3751, Sep. 1975.

[2] J. L. Ericksen, “Conservation laws for liquid crystals,” J. Rheol., vol. 5,
no. 1, pp. 23–34, Mar. 1961.

[3] F. M. Leslie, “Some constitutive equations for liquid crystals,” Arch.
Ration. Mech. Anal., vol. 28, no. 4, pp. 265–283, Jan. 1968.

[4] T. Qian and P. Sheng, “Generalized hydrodynamic equations for nematic
liquid crystals,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdis-
cip. Top., vol. 58, no. 6, pp. 7475–7485, Dec. 1998.

[5] A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems.
Oxford, U.K.: Oxford Univ. Press, 1994.

[6] G. Tóth, C. Denniston, and J. M. Yeomans, “Hydrodynamics of topolog-
ical defects in nematic liquid crystals,” Phys. Rev. Lett., vol. 88, no. 10,
p. 105504, Mar. 2002.

[7] D. Sven̆sek and S. Z̆umer, “Hydrodynamics of pair-annihilating disclina-
tion lines in nematic liquid crystals,” Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 66, no. 2, pt. 1, p. 021712, Aug. 2002.

[8] C. M. Care, I. Halliday, K. Good, and S. V. Lishchuk, “A generalised
lattice Boltzmann algorithm for the flow of nematic liquid crystal with
variable order parameter,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 67, no. 6, p. 061703, Jun. 2003.

[9] J. I. Fukuda, “Effect of hydrodynamic flow on kinetics of nematic-
isotropic transition in liquid crystals,” Eur. Phys. J., B, vol. 1, no. 2,
pp. 173–177, 1998.

[10] T. A. Davis and E. C. Gartland, Jr., “Finite element analysis of the Landau-
de Gennes minimization problem for liquid crystals,” SIAM J. Numer.
Anal., vol. 35, no. 1, pp. 336–362, Feb. 1998.

[11] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed.
Oxford, U.K.: Clarendon, 1993.

[12] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Statistical Physics,
3rd ed. ser. Course of theoretical physics, vol. 5. Oxford, U.K.: Perg-
amon, 1980.

[13] H. Mori, E. C. Gartland, J. R. Kelly, and P. J. Bos, “Multidimensional
director modeling using the Q tensor representation in a liquid crystal cell
and its application to the π cell with patterned electrodes,” Jpn. J. Appl.
Phys., vol. 38, no. 1A, pp. 135–146, Jan. 1999.



1582 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 7, JULY 2006

[14] N. Schopohl and T. J. Sluckin, “Defect core structure in nematic liquid
crystals,” Phys. Rev. Lett., vol. 59, no. 22, pp. 2582–2584, Nov. 1987.

[15] A. Sonnet, A. Kilian, and S. Hess, “Alignment tensor versus director:
Description of defects in nematic liquid crystals,” Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 52, no. 1, pp. 718–722,
Jul. 1995.

[16] D. Sven̆sek and S. Z̆umer, “Instability modes of high-strength discli-
nations in nematics,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 70, no. 6, pt. 1, p. 061707, 2004.

[17] A. Goldstein, “On steepest descent,” SIAM J. Control Optim., vol. 3, no. 1,
pp. 147–151, 1965.

[18] L. Armijo, “Minimization of functions having Lipschitz continuous first
partial derivatives,” Pac. J. Math., vol. 16, no. 1, pp. 1–3, 1966.

[19] P. M. Gresho, R. L. Sani, and M. S. Engelman, Incompressible Flow and
the Finite Element Method. Chichester, U.K.: Wiley, 2000.

[20] ——, Incompressible Flow and the Finite Element Method. Chichester,
U.K.: Wiley, 2000.

[21] P. Hood and C. Taylor, Navier–Stokes Equations Using Mixed Interpola-
tion. Mexico City, Mexico: UAM Press, 1974.

[22] S. J. Tavener, T. Mullin, G. I. Blake, and K. A. Cliffe, “Numerical bifurca-
tion study of electrohydrodynamic convection in nematic liquid crystals,”
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 63,
no. 1, pt. 1, p. 011708, Jan. 2001.

[23] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. ser. Johns
Hopkins studies in the mathematical sciences. Baltimore, MD: The
Johns Hopkins Univ. Press, 1996.

[24] N. J. Mottram and S. J. Hogan, “Disclination core structure and induced
phase changes in nematic liquid crystals,” Philos. Trans. Roy. Soc. London
A, Math. Phys. Sci., vol. 355, no. 1731, pp. 2045–2064, Oct. 1997.

[25] H. J. Coles, “Laser and electric field induced birefringence studies
on the cyanobiphenyl homologues,” Mol. Cryst. Liq. Cryst., vol. 49,
pp. 67–74, 1978.

[26] F. A. Fernández, S. E. Day, P. Trwoga, H. Deng, and R. James, “Three-
dimensional dynamic modelling of liquid crystal display cells using finite
elements,” Mol. Cryst. Liq. Cryst., vol. 375, pp. 291–299, 2002.

[27] M. Schäfer and S. Turek, “Benchmark computations of laminar flow
around a cylinder,” in Flow Simulation With High-Performance Comput-
ers II, Notes in Fluid Mechanics, vol. 52, E. H. Hirschel, Ed. Braun-
schweig, Germany: Vieweg, 1996, pp. 547–566.

[28] E. Erturk, T. C. Corke, and C. Gokcol, “Numerical solutions of 2-D
steady incompressible driven cavity flow at high Reynolds numbers,”
Int. J. Numer. Methods Fluids, vol. 48, no. 7, pp. 747–774, 2005.

[29] C. Blanc, D. Sven̆sek, S. Z̆umer, and M. Nobili, “Dynamics of nematic
liquid crystal disclinations: The role of the backflow,” in Phys. Rev. Lett.,
Aug. 2005, vol. 95, p. 097802.

Richard James received the M.Eng. degree in elec-
tronic and electrical engineering from the University
College London, London, U.K., in 2001. In 2003, he
started working toward the Ph.D. degree at the same
university.

He spent 18 months working as a Research
Fellow in the Liquid Crystal Modelling Group,
University College London. His research interests
include modeling of LC devices for displays and
communications.

Eero Willman received the M.Eng. degree in elec-
tronic and electrical engineering from the De-
partment of Electronic and Electrical Engineering,
University College London, London, U.K., in 2003.
He is currently working toward the Ph.D. degree at
the same university.

His current research interests are computer mod-
eling and development of modeling tools for the
simulation of nematic LC devices.

F. Aníbal Fernández (M’88) received the B.Sc.
degree in applied mathematics from Universidad de
Chile, Santiago, Chile, in 1969 and the Ph.D. degree
in electrical engineering from the University College
London, London, U.K., in 1981.

Until 1985, he was on the Academic Staff of the
Department of Electrical Engineering, Universidad
de Chile. In 1986, he joined the staff of the De-
partment of Electronic and Electrical Engineering,
University College London, London, U.K. where he
is currently a Senior Lecturer. His research interests

include microwave and optical aspects of electromagnetic theory, especially
the use of numerical methods in those fields. In the last ten years, he has
concentrated mainly on the modeling of LC devices.

Sally E. Day (M’99) received the degree in physics
from St. Hilda’s College, Oxford University, Oxford,
U.K., in 1983 and the D.Phil. degree from Oxford
University, in 1988.

She spent five years with Thorn EMI, Central
Research Laboratories (CRL), and Royal Signals
and Radar Establishment (RSRE), Malvern, studying
various aspects of the optical properties of LCs,
including the nonlinear optical properties. In 1992,
she received a Royal Society University Research
Fellowship held in the Electronic and Electrical En-

gineering Department at University College London, London, U.K., where she
is currently a Senior Lecturer. Her research interests include the application of
LCs in display and nondisplay devices.


