377 research outputs found
Glide and Superclimb of Dislocations in Solid He
Glide and climb of quantum dislocations under finite external stress,
variation of chemical potential and bias (geometrical slanting) in Peierls
potential are studied by Monte Carlo simulations of the effective string model.
We treat on unified ground quantum effects at finite temperatures . Climb at
low is assisted by superflow along dislocation core -- {\it superclimb}.
Above some critical stress avalanche-type creation of kinks is found. It is
characterized by hysteretic behavior at low . At finite biases gliding
dislocation remains rough even at lowest -- the behavior opposite to
non-slanted dislocations. In contrast to glide, superclimb is characterized by
quantum smooth state at low temperatures even for finite bias. In some
intermediate -range giant values of the compressibility as well as
non-Luttinger type behavior of the core superfluid are observed.Comment: Updated version submitted to JLTP as QFS2010 proceedings; 11 pages, 6
figure
A glassy contribution to the heat capacity of hcp He solids
We model the low-temperature specific heat of solid He in the hexagonal
closed packed structure by invoking two-level tunneling states in addition to
the usual phonon contribution of a Debye crystal for temperatures far below the
Debye temperature, . By introducing a cutoff energy in the
two-level tunneling density of states, we can describe the excess specific heat
observed in solid hcp He, as well as the low-temperature linear term in the
specific heat. Agreement is found with recent measurements of the temperature
behavior of both specific heat and pressure. These results suggest the presence
of a very small fraction, at the parts-per-million (ppm) level, of two-level
tunneling systems in solid He, irrespective of the existence of
supersolidity.Comment: 11 pages, 4 figure
Superfluidity of a perfect quantum crystal
In recent years, experimental data were published which point to the
possibility of the existence of superfluidity in solid helium. To investigate
this phenomenon theoretically we employ a hierarchy of equations for reduced
density matrices which describes a quantum system that is in thermodynamic
equilibrium below the Bose-Einstein condensation point, the hierarchy being
obtained earlier by the author. It is shown that the hierarchy admits solutions
relevant to a perfect crystal (immobile) in which there is a frictionless flow
of atoms, which testifies to the possibility of superfluidity in ideal solids.
The solutions are studied with the help of the bifurcation method and some
their peculiarities are found out. Various physical aspects of the problem,
among them experimental ones, are discussed as well.Comment: 24 pages with 2 figures, version accepted for publication in
Eur.Phys.J.
Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra
A state of matter is characterized by its symmetry breaking and elementary
excitations.
A supersolid is a state which breaks both translational symmetry and internal
symmetry.
Here, we review some past and recent works in phenomenological
Ginsburg-Landau theories, ground state trial wavefunctions and microscopic
numerical calculations. We also write down a new effective supersolid
Hamiltonian on a lattice.
The eigenstates of the Hamiltonian contains both the ground state
wavefunction and all the excited states (supersolidon) wavefunctions. We
contrast various kinds of supersolids in both continuous systems and on
lattices, both condensed matter and cold atom systems. We provide additional
new insights in studying their order parameters, symmetry breaking patterns,
the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure
The glassy response of solid He-4 to torsional oscillations
We calculated the glassy response of solid He-4 to torsional oscillations
assuming a phenomenological glass model. Making only a few assumptions about
the distribution of glassy relaxation times in a small subsystem of otherwise
rigid solid He-4, we can account for the magnitude of the observed period shift
and concomitant dissipation peak in several torsion oscillator experiments. The
implications of the glass model for solid He-4 are threefold: (1) The dynamics
of solid He-4 is governed by glassy relaxation processes. (2) The distribution
of relaxation times varies significantly between different torsion oscillator
experiments. (3) The mechanical response of a torsion oscillator does not
require a supersolid component to account for the observed anomaly at low
temperatures, though we cannot rule out its existence.Comment: 9 pages, 4 figures, presented at QFS200
Defects and glassy dynamics in solid He-4: Perspectives and current status
We review the anomalous behavior of solid He-4 at low temperatures with
particular attention to the role of structural defects present in solid. The
discussion centers around the possible role of two level systems and structural
glassy components for inducing the observed anomalies. We propose that the
origin of glassy behavior is due to the dynamics of defects like dislocations
formed in He-4. Within the developed framework of glassy components in a solid,
we give a summary of the results and predictions for the effects that cover the
mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of
the glassy response of solid He-4. Our proposed glass model for solid He-4 has
several implications: (1) The anomalous properties of He-4 can be accounted for
by allowing defects to freeze out at lowest temperatures. The dynamics of solid
He-4 is governed by glasslike (glassy) relaxation processes and the
distribution of relaxation times varies significantly between different
torsional oscillator, shear modulus, and dielectric function experiments. (2)
Any defect freeze-out will be accompanied by thermodynamic signatures
consistent with entropy contributions from defects. It follows that such
entropy contribution is much smaller than the required superfluid fraction, yet
it is sufficient to account for excess entropy at lowest temperatures. (3) We
predict a Cole-Cole type relation between the real and imaginary part of the
response functions for rotational and planar shear that is occurring due to the
dynamics of defects. Similar results apply for other response functions. (4)
Using the framework of glassy dynamics, we predict low-frequency yet to be
measured electro-elastic features in defect rich He-4 crystals. These
predictions allow one to directly test the ideas and very presence of glassy
contributions in He-4.Comment: 33 pages, 13 figure
Two-body correlations and the superfluid fraction for nonuniform systems
We extend the one-body phase function upper bound on the superfluid fraction
in a periodic solid (a spatially ordered supersolid) to include two-body phase
correlations. The one-body current density is no longer proportional to the
gradient of the one-body phase times the one-body density, but rather it
depends also on two-body correlation functions. The equations that
simultaneously determine the one-body and two-body phase functions require a
knowledge of one-, two-, and three-body correlation functions. The approach can
also be extended to disordered solids. Fluids, with two-body densities and
two-body phase functions that are translationally invariant, cannot take
advantage of this additional degree of freedom to lower their energy.Comment: 13 page
Tunnelling defect nanoclusters in hcp 4He crystals: alternative to supersolidity
A simple model based on the concept of resonant tunnelling clusters of
lattice defects is used to explain the low temperature anomalies of hcp 4He
crystals (mass decoupling from a torsional oscillator, shear modulus anomaly,
dissipation peaks, heat capacity peak). Mass decoupling is a result of an
internal Josephson effect: mass supercurrent inside phase coherent tunnelling
clusters. Quantitative results are in reasonable agreement with experiments.Comment: 13 pages, 5 figure
On The Mobile Behavior of Solid He at High Temperatures
We report studies of solid helium contained inside a torsional oscillator, at
temperatures between 1.07K and 1.87K. We grew single crystals inside the
oscillator using commercially pure He and He-He mixtures containing
100 ppm He. Crystals were grown at constant temperature and pressure on the
melting curve. At the end of the growth, the crystals were disordered,
following which they partially decoupled from the oscillator. The fraction of
the decoupled He mass was temperature and velocity dependent. Around 1K, the
decoupled mass fraction for crystals grown from the mixture reached a limiting
value of around 35%. In the case of crystals grown using commercially pure
He at temperatures below 1.3K, this fraction was much smaller. This
difference could possibly be associated with the roughening transition at the
solid-liquid interface.Comment: 15 pages, 6 figure
Change in the distribution of a member of the strand line community: the seaweed fly (Diptera: Coelopidae)
1. Coastal organisms are predicted to be particularly susceptible to the impact of global warming. In this study the distribution and relative abundance of two coastal invertebrates, Coelopa frigida (Fabricius) and C. pilipes are investigated. 2. Coelopa pilipes has a more southerly distribution than C. frigida , and prefers a warmer climate. Coelopa pilipes is less resistant to sub-zero temperatures than C. frigida and its northerly distribution is probably limited by cold winter days. 3. The most recent distribution map of C. frigida and C. pilipes in northern Europe was published a decade ago and showed the northerly extent of the distribution of C. pilipes reaching the north coast of mainland Scotland but its complete absence from the Western and Northern Isles. 4. C. pilipes has now spread throughout the Western Isles and the Orkney Islands but is still absent from Shetland. There has also been an increase in the relative frequency of C. pilipes at sites harbouring coelopids on the British mainland. A similar pattern of distribution change along the west coast of Sweden is reported. 5. It is proposed that these changes have occurred primarily as a result of global warming and in particular due to the recent increase in winter temperatures. A number of other indirect effects may have also contributed to these changes, including a probable change in macroalgae distribution. The implications of these changes for the wrack bed ecosystem and at higher trophic levels are considered
- …