8 research outputs found

    Adsorption kinetics in binary surfactant mixtures studied with external reflection FTIR spectroscopy

    No full text
    The adsorption kinetics of mixtures of soluble surfactants at the air-water interface was studied on an overflowing cylinder. Vibrational spectra of the adsorbed monolayers were acquired by external reflection Fourier transform infrared spectroscopy, and target factor analysis was used to determine the compositions of mixed monolayers. Laser Doppler velocimetry was employed to measure the surface expansion rates, and hence the effective surface age, which was in the range 0.1-1 s. Three surfactant mixtures with different interactions were investigated. Blends of the cationic hydrocarbon surfactant hexadecyl trimethylammonium bromide (CTAB) and the nonionic hydrocarbon surfactant octaethylene glycol monodecyl ether (C10E8) were found to mix ideally in the monolayer over a wide range of subsurface compositions. Combinations of C10E8 and the anionic fluorosurfactant ammonium perfluorononanoate (APFN) exhibited nonideal mixing that could be described with regular solution theory. APFN adsorbed to the interface at a rate limited by monomer diffusion but the adsorption of C10E8 appeared to be under kinetic control. The adsorption behavior of the cationic-anionic mixture of CTAB and APFN was dominated by the interaction of the oppositely charged headgroups. Either side of equimolar bulk composition only the species in excess was found to adsorb, which is rationalized by the presence of aggregates in the bulk that act as a sink for free monomer. Prior evidence in the literature suggests these aggregates may be vesicles. At equimolar compositions both species were found to coadsorb; this unexpected result may be explained by adsorption of vesicles to the uncharged interface. A semiquantitative model based on the interaction between the electrical double layers of the oppositely charged monolayer and vesicle explains the absence of adsorption of vesicles away from equimolar compositions. The combination of the overflowing cylinder, to generate a steadily expanding surface with well-defined hydrodynamics, and FTIR spectroscopy, to quantify the composition of the adsorbed monolayer, can be used to study a broad range of mixed monolayers at the air-water interface under nonequilibrium conditions

    Label-free chemical imaging of catalytic solids by coherent anti-Stokes Raman scattering and synchrotron-based infrared microscopy

    No full text
    Take a look inside: The combination of coherent anti-Stokes Raman scattering and synchrotron-based IR microscopy during the catalytic conversion of thiophene derivatives on zeolite crystals yields space- and time-resolved chemically specific information without the need for labeling (see picture). The thiophene reactant is mostly present in the center of the crystal, and the product is aligned within the straight pores of the zeolites

    Label-free imaging of lipophilic bioactive molecules during lipid digestion by multiplex coherent anti-stokes raman scattering microspectroscopy

    No full text
    The digestion and absorption of lipophilic, bioactive molecules such as lipids, physiologically active nutrients (nutraceuticals), and drugs play a crucial role in human development and health. These molecules are often delivered in lipid droplets. Currently, the kinetics of digestion of these lipid droplets is followed by in vitro models that simulate gastrointestinal conditions, while phase changes within the lipid droplets are observed by light or electron microscopy. However real-time, spatially resolved information about the local chemical composition and phase behavior inside the oil droplet is not accessible from these approaches. This information is essential as the surface and phase behavior determine the local distribution of molecules in the oil droplets and thus may influence the rate of uptake, for example, by impairing the effective transfer of bioactive molecules to intestinal cells. We demonstrate the capability of multiplex coherent anti-Stokes Raman scattering (CARS) microspectroscopy to image the digestion process non-invasively, with submicrometer resolution, millimolar sensitivity, and without the need for labeling. The lipolysis of glyceryl trioleate emulsion droplets by porcine pancreatic lipase is imaged, and the undigested oil and the crystalline lipolytic products are distinguished by their different vibrational signatures. The digestion of droplets containing the phytosterol analogue ergosterol is also probed, and the crystals are observed to dissolve into the lipolytic products. The lipophilic drug progesterone and Vitamin D3 are dissolved in glyceryl trioctanoate emulsion droplets, and the local concentration is mapped with millimolar sensitivity. The bioactive molecules are observed to concentrate within the droplets as the oil is hydrolyzed. This observation is ascribed to the low solubility of these molecules in the lipolytic products for this system. Neither the type of bioactive molecule nor the initial radius of the emulsion droplet had a large effect upon the rate of digestion under these conditions; lipolysis of the triglyceride by pancreatic lipase appears insensitive to the type of bioactive molecule in solution. These findings shed important new light on lipid digestion and open new possibilities for the chemical visualization of lipid digestion and phase changes in lipid droplets containing bioactive molecules, which in combination with other existing techniques will provide a full picture of this complex physicochemical process

    Host–Guest Geometry in Pores of Zeolite ZSM-5 Spatially Resolved with Multiplex CARS Spectromicroscopy

    No full text
    Pore relations: Reagent molecules form head-to-tail chains in the pores of ZSM-5 zeolite particles in the presence or absence of acidic sites, according to multiplex coherent anti-Stokes Raman scattering spectromicroscopy (mCARS). The molecular ordering in the pores makes it possible to characterize the crystallographic subunits of individual ZSM-5 particles with (sub)micrometer spatial resolution in three dimensions
    corecore