621 research outputs found
Genome-wide association study identifies common and low-frequency variants at the AMHgene locus that strongly predict serum AMH levels in males
Anti-Müllerian hormone (AMH) is an essential messenger of sexual differentiation in the foetus and is an emerging biomarker of postnatal reproductive function in females. Due to a paucity of adequately sized studies, the genetic determinants of circulating AMH levels are poorly characterized. In samples from 2815 adolescents aged 15 from the ALSPAC study, we performed the first genome-wide association study of serum AMH levels across a set of ∼9 M ‘1000 Genomes Reference Panel’ imputed genetic variants. Genetic variants at the AMH protein-coding gene showed considerable allelic heterogeneity, with both common variants [rs4807216 (PMale = 2 × 10−49, Beta: ∼0.9 SDs per allele), rs8112524 (PMale = 3 × 10−8, Beta: ∼0.25)] and low-frequency variants [rs2385821 (PMale = 6 × 10−31, Beta: ∼1.2, frequency 3.6%)] independently associated with apparently large effect sizes in males, but not females. For all three SNPs, we highlight mechanistic links to AMH gene function and demonstrate highly significant sex interactions (PHet 0.0003–6.3 × 10−12), culminating in contrasting estimates of trait variance explained (24.5% in males versus 0.8% in females). Using these SNPs as a genetic proxy for AMH levels, we found no evidence in additional datasets to support a biological role for AMH in complex traits and diseases in men
Genetic Regulation of Puberty Timing in Humans.
Understanding the regulation of puberty timing has relevance to developmental and human biology and to the pathogenesis of various diseases. Recent large-scale genome-wide association studies on puberty timing and adult height, body mass index (BMI) and central body shape provide evidence for shared biological mechanisms that regulate these traits. There is a substantial genetic overlap between age at menarche in women and BMI, with almost invariable directional consistency with the epidemiological associations between earlier menarche and higher BMI. By contrast, the genetic loci identified for age at menarche are largely distinct from those identified for central body shape, while alleles that confer earlier menarche can be associated with taller or shorter adult height. The findings of population-based studies on age at menarche show increasing relevance for other studies of rare monogenic disorders and enrich our understanding of the mechanisms that regulate the timing of puberty and reproductive function.This work was supported by the MRC.This is the author accepted manuscript. The final version is available from Karger at http://www.karger.com/Article/Abstract/43102
Elucidating the genetic basis of social interaction and isolation.
The negative impacts of social isolation and loneliness on health are well documented. However, little is known about their possible biological determinants. In up to 452,302 UK Biobank study participants, we perform genome-wide association study analyses for loneliness and regular participation in social activities. We identify 15 genomic loci (P < 5 × 10-8) for loneliness, and demonstrate a likely causal association between adiposity and increased susceptibility to loneliness and depressive symptoms. Further loci were identified for regular attendance at a sports club or gym (N = 6 loci), pub or social club (N = 13) or religious group (N = 18). Across these traits there was strong enrichment for genes expressed in brain regions that control emotional expression and behaviour. We demonstrate aetiological mechanisms specific to each trait, in addition to identifying loci that are pleiotropic across multiple complex traits. Further study of these traits may identify novel modifiable risk factors associated with social withdrawal and isolation
Association of puberty timing with type 2 diabetes: A systematic review and meta-analysis.
BACKGROUND:Emerging studies have investigated the association between puberty timing, particularly age at menarche (AAM), and type 2 diabetes. However, whether this association is independent of adiposity is unclear. We aimed to systematically review published evidence on the association between puberty timing and type 2 diabetes (T2D) or impaired glucose tolerance (IGT), with and without adjustment for adiposity, and to estimate the potential contribution of puberty timing to the burden of T2D in the United Kingdom (UK). METHODS AND FINDINGS:We searched PubMed, Medline, and Embase databases for publications until February 2019 on the timing of any secondary sexual characteristic in boys or girls in relation to T2D/IGT. Inverse-variance-weighted random-effects meta-analysis was used to pool reported estimates, and meta-regression was used to explore sources of heterogeneity. Twenty-eight observational studies were identified. All assessed AAM in women (combined N = 1,228,306); only 1 study additionally included men. In models without adjustment for adult adiposity, T2D/IGT risk was lower per year later AAM (relative risk [RR] = 0.91, 95% CI 0.89-0.93, p < 0.001, 11 estimates, n = 833,529, I2 = 85.4%) and higher for early versus later menarche (RR = 1.39, 95% CI 1.25-1.55, p < 0.001, 23 estimates, n = 1,185,444, I2 = 87.8%). Associations were weaker but still evident in models adjusted for adiposity (AAM: RR = 0.97 per year, 95% CI 0.95-0.98, p < 0.001, 12 estimates, n = 852,268, I2 = 51.8%; early menarche: RR = 1.19, 95% CI 1.11-1.28, p < 0.001, 21 estimates, n = 890,583, I2 = 68.1%). Associations were stronger among white than Asian women, and in populations with earlier average AAM. The estimated population attributable risk of T2D in white UK women due to early menarche unadjusted and adjusted for adiposity was 12.6% (95% CI 11.0-14.3) and 5.1% (95% CI 3.6-6.7), respectively. Findings in this study are limited by residual and unmeasured confounding, and self-reported AAM. CONCLUSIONS:Earlier AAM is consistently associated with higher T2D/IGT risk, independent of adiposity. More importantly, this research has identified that a substantial proportion of T2D in women is related to early menarche, which would be expected to increase in light of global secular trends towards earlier puberty timing. These findings highlight the need to identify the underlying mechanisms linking early menarche to T2D/IGT risk
Puberty timing associated with diabetes, cardiovascular disease and also diverse health outcomes in men and women: the UK Biobank study.
Early puberty timing is associated with higher risks for type 2 diabetes (T2D) and cardiovascular disease in women and therefore represents a potential target for early preventive interventions. We characterised the range of diseases and other adverse health outcomes associated with early or late puberty timing in men and women in the very large UK Biobank study. Recalled puberty timing and past/current diseases were self-reported by questionnaire. We limited analyses to individuals of White ethnicity (250,037 women; 197,714 men) and to disease outcomes with at least 500 cases (~ 0.2% prevalence) and we applied stringent correction for multiple testing (corrected threshold P < 7.48 × 10(-5)). In models adjusted for socioeconomic position and adiposity/body composition variables, both in women and men separately, earlier puberty timing was associated with higher risks for angina, hypertension and T2D. Furthermore, compared to the median/average group, earlier or later puberty timing in women or men was associated with higher risks for 48 adverse outcomes, across a range of cancers, cardio-metabolic, gynaecological/obstetric, gastrointestinal, musculoskeletal, and neuro-cognitive categories. Notably, both early and late menarche were associated with higher risks for early natural menopause in women. Puberty timing in both men and women appears to have a profound impact on later health.This research has been conducted using the UK Biobank Resource. This work was supported by the Medical Research Council [Unit Programme number MC_UU_12015/2].This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/srep1120
Recommended from our members
Identifying genetic variants that affect viability in large cohorts
A number of open questions in human evolutionary genetics would become tractable if we were able to directly measure evolutionary fitness. As a step towards this goal, we developed a method to examine whether individual genetic variants, or sets of genetic variants, currently influence viability. The approach consists in testing whether the frequency of an allele varies across ages, accounting for variation in ancestry. We applied it to the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort and to the parents of participants in the UK Biobank. Across the genome, we found only a few common variants with large effects on age-specific mortality: tagging the APOE ε4 allele and near CHRNA3. These results suggest that when large, even late-onset effects are kept at low frequency by purifying selection. Testing viability effects of sets of genetic variants that jointly influence 1 of 42 traits, we detected a number of strong signals. In participants of the UK Biobank of British ancestry, we found that variants that delay puberty timing are associated with a longer parental life span (P~6.2 × 10-6 for fathers and P~2.0 × 10-3 for mothers), consistent with epidemiological studies. Similarly, variants associated with later age at first birth are associated with a longer maternal life span (P~1.4 × 10-3). Signals are also observed for variants influencing cholesterol levels, risk of coronary artery disease (CAD), body mass index, as well as risk of asthma. These signals exhibit consistent effects in the GERA cohort and among participants of the UK Biobank of non-British ancestry. We also found marked differences between males and females, most notably at the CHRNA3 locus, and variants associated with risk of CAD and cholesterol levels. Beyond our findings, the analysis serves as a proof of principle for how upcoming biomedical data sets can be used to learn about selection effects in contemporary humans.Medical Research Council (Unit Programme number MC_UU_12015/2). This grant supported FRD and JRBP. National Institutes of Health (NIH) (grant number R01GM121372). This grant is to MP and JKP. National Institutes of Health (NIH) (grant number R01MH106842). This grant is to JKP. Columbia University. This research was funded in part by a Research Initiative in Science and Engineering grant to MP and JKP. National Institutes of Health (NIH) (grant number R01GM115889). This grant is to Guy Sella, provided partial support for HM
Genetic risk score for adult body mass index associations with childhood and adolescent weight gain in an African population
Abstract
Background
Ninety-seven independent single nucleotide polymorphisms (SNPs) are robustly associated with adult body mass index (BMI kg/m2) in Caucasian populations. The relevance of such variants in African populations at different stages of the life course (such as childhood) is unclear. We tested whether a genetic risk score composed of the aforementioned SNPs was associated with BMI from infancy to early adulthood. We further tested whether this genetic effect was mediated by conditional weight gain at different growth periods. We used data from the Birth to Twenty Plus Cohort (Bt20+), for 971 urban South African black children from birth to 18Â years. DNA was collected at 13Â years old and was genotyped using the Metabochip (Illumina) array. The weighted genetic risk score (wGRS) for BMI was constructed based on 71 of the 97 previously reported SNPs.
Results
The cross-sectional association between the wGRS and BMI strengthened with age from 5 to 18 years. The significant associations were observed from 11 to 18 years, and peak effect sizes were observed at 13 and 14 years of age. Results from the linear mixed effects models showed significant interactions between the wGRS and age on longitudinal BMI but no such interactions were observed in sex and the wGRS. A higher wGRS was associated with an increased relative risk of belonging to the early onset obese longitudinal BMI trajectory (relative risk = 1.88; 95%CI 1.28 to 2.76) compared to belonging to a normal longitudinal BMI trajectory. Adolescent conditional relative weight gain had a suggestive mediation effect of 56% on the association between wGRS and obesity risk at 18 years.
Conclusions
The results suggest that genetic susceptibility to higher adult BMI can be tracked from childhood in this African population. This supports the notion that prevention of adult obesity should begin early in life. The genetic risk score combined with other non-genetic risk factors, such as BMI trajectory membership in our case, has the potential to be used to screen for early identification of individuals at increased risk of obesity and other related NCD risk factors in order to reduce the adverse health risk outcomes later
- …