29 research outputs found

    The use of fluorescent probes to characterize conformational changes in the interaction between vitronectin and plasminogen activator inhibitor-1

    Get PDF
    Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of tissue-type plasminogen activator and urokinase, is known to convert readily to a latent form by insertion of the reactive center loop into a central β- sheet. Interaction with vitronectin stabilizes PAI-1 and decreases the rate of conversion to the latent form, but conformational effects of vitronectin on the reactive center loop of PAI-1 have not been documented. Mutant forms of PAI-1 were designed with a cysteine substitution at either position P1\u27 or P9 of the reactive center loop. Labeling of the unique cysteine with a sulfhydryl-reactive fluorophore provides a probe that is sensitive to vitronectin binding. Results indicate that the scissile P1-P1\u27 bond of PAI-1 is more solvent exposed upon interaction with vitronectin, whereas the N- terminal portion of the reactive loop does not experience a significant change in its environment. These results were complemented by labeling vitronectin with an arginine-specific coumarin probe which compromises heparin binding but does not interfere with PAI-1 binding to the protein. Dissociation constants of approximately 100 nM are calculated for the vitronectin/PAI-1 interaction from titrations using both fluorescent probes. Furthermore, experiments in which PAI-1 failed to compete with heparin for binding to vitronectin argue for separate binding sites for the two ligands on vitronectin

    Services Provided by Local Govenments in New York State

    Full text link
    A.E. Res. 86-2

    Metals affect the structure and activity of human plasminogen activator inhibitor-1. I. Modulation of stability and protease inhibition

    Get PDF
    Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. Under physiological conditions, half of the inhibitor transitions to a latent state within 1–2 h. The interaction between PAI-1 and the plasma protein vitronectin prolongs this active lifespan by ∼50%. Previously, our group demonstrated that PAI-1 binds to resins using immobilized metal affinity chromatography (Day, U.S. Pat. 7,015,021 B2, March 21, 2006). In this study, the effect of these metals on function and stability was investigated by measuring the rate of the transition from the active to latent conformation. All metals tested showed effects on stability, with the majority falling into one of two types depending on their effects. The first type of metal, which includes magnesium, calcium and manganese, invoked a slight stabilization of the active conformation of PAI-1. A second category of metals, including cobalt, nickel and copper, showed the opposite effects and a unique vitronectin-dependent modulation of PAI-1 stability. This second group of metals significantly destabilized PAI-1, although the addition of vitronectin in conjunction with these metals resulted in a marked stabilization and slower conversion to the latent conformation. In the presence of copper and vitronectin, the half-life of active PAI-1 was extended to 3 h, compared to a half-life of only ∼30 min with copper alone. Nickel had the largest effect, reducing the half-life to ∼5 min. Together, these data demonstrate a heretofore-unknown role for metals in modulating PAI-1 stability
    corecore