22,285 research outputs found

    Investigation of phase-separated electronic states in 1.5µm GaInNAs/GaAs heterostructures by optical spectroscopy

    Get PDF
    We report on the comparative electronic state characteristics of particular GaInNAs/GaAs quantum well structures that emit near 1.3 and 1.5 µm wavelength at room temperature. While the electronic structure of the 1.3 µm sample is consistent with a standard quantum well, the 1.5 µm sample demonstrate quite different characteristics. By using photoluminescence sPLd excitation spectroscopy at various detection wavelengths, we demonstrate that the macroscopic electronic states in the 1.5 µm structures originate from phase-separated quantum dots instead of quantum wells. PL measurements with spectrally selective excitation provide further evidence for the existence of composition-separated phases. The evidence is consistent with phase segregation during the growth leading to two phases, one with high In and N content which accounts for the efficient low energy 1.5 µm emission, and the other one having lower In and N content which contributes metastable states and only emits under excitation in a particular wavelength range

    Quantification of Pulmonary Arterial Wall Distensibility Using Parameters Extracted from Volumetric Micro-CT Images

    Get PDF
    Stiffening, or loss of distensibility, of arterial vessel walls is among the manifestations of a number of vascular diseases including pulmonary arterial hypertension. We are attempting to quantify the mechanical properties of vessel walls of the pulmonary arterial tree using parameters derived from high-resolution volumetric x-ray CT images of rat lungs. The pulmonary arterial trees of the excised lungs are filled with a contrast agent. The lungs are imaged with arterial pressures spanning the physiological range. Vessel segment diameters are measured from the inlet to the periphery, and distensibilities calculated from diameters as a function of pressure. The method shows promise as an adjunct to other morphometric techniques such as histology and corrosion casting. It possesses the advantages of being nondestructive, characterizing the vascular structures while the lungs are imaged rapidly and in a near-physiological state, and providing the ability to associate mechanical properties with vessel location in the intact tree hierarchy

    Kinetics of the reduction of metalloproteins by chromous ion

    Get PDF
    The reduction of Cu(330) in Rhus vernicifera laccase by chromous ion is 30% faster than reduction of Cu(614) at room temperature [pH 4.8, µ = 0.1 (NaCl)], and two parallel first-order paths, attributed to heterogeneity of the protein, are observed at both wavelengths. The reactions of stellacyanin, spinach and French-bean plastocyanins, and cytochrome c with chromous ion under similar conditions are faster than that with laccase by factors of 102 to 104, and are first order in protein concentration. Comparison of rates and activation parameters for the reduction of "blue" copper in laccase, stellacyanin, and the two plastocyanins indicates that reduction of the Cu(614) site in laccase may occur by intramolecular electron transfer from one of the Cu(330) sites. Our value of ΔH (17.4 kcal/mol) for the chromous ion reduction of cytochrome c is consistent with a mechanism in which major conformational changes in the protein must accompany electron transfer

    First principles study of intrinsic point defects in hexagonal barium titanate

    Get PDF
    Density functional theory (DFT) calculations have been used to study the nature of intrinsic defects in the hexagonal polymorph of barium titanate. Defect formation energies are derived for multiple charge states and due consideration is given to finite-size effects (elastic and electrostatic) and the band gap error in defective cells. Correct treatment of the chemical potential of atomic oxygen means that it is possible to circumvent the usual errors associated with the inaccuracy of DFT calculations on the oxygen dimer. Results confirm that both mono- and di-vacancies exist in their nominal charge states over the majority of the band gap. Oxygen vacancies are found to dominate the system in metal-rich conditions with face sharing oxygen vacancies being preferred over corner sharing oxygen vacancies. In oxygen-rich conditions, the dominant vacancy found depends on the Fermi level. Binding energies also show the preference for metal-oxygen di-vacancy formation. Calculated equilibrium concentrations of vacancies in the system are presented for numerous temperatures. Comparisons are drawn with the cubic polymorph as well as with previous potential-based simulations and experimental results

    SPECT Imaging of Pulmonary Blood Flow in a Rat

    Get PDF
    Small animal imaging is experiencing rapid development due to its importance in providing high-throughput phenotypic data for functional genomics studies. We have developed a single photon emission computed tomography (SPECT) system to image the pulmonary perfusion distribution in the rat. A standard gamma camera, equipped with a pinhole collimator, was used to acquire SPECT projection images at 40 sec/view of the rat thorax following injection of Tc99m labeled albumin that accumulated in the rat\u27s lungs. A voxel-driven, ordered-subset expectation maximization reconstruction was implemented. Following SPECT imaging, the rat was imaged using micro-CT with Feldkamp conebeam reconstruction. The two reconstructed image volumes were fused to provide a structure/function image of the rat thorax. Reconstruction accuracy and performance were evaluated using numerical simulations and actual imaging of an experimental phantom consisting of Tc99m filled chambers with known diameters and count rates. Full-width half-maximum diameter measurement errors decreased with increasing chamber diameter, ranging from \u3c 6% down to 0.1%. Errors in the ratio of count rate estimates between tubes were also diameter dependent but still relatively small. This preliminary study suggests that SPECT will be useful for imaging and quantifying the pulmonary blood flow distribution and the distribution of Tc99m labeled ligands in the lungs of small laboratory animals

    Study and applications of retrodirective and self-adaptive electromagnetic wave controls to a Mars probe Quarterly report, 1 Oct. - 31 Dec. 1965

    Get PDF
    Design feasibility and applications of adaptive antenna circuits for deep space communication - antenna concepts, environmental effects, and phase lock loops and adaptive circuitr

    Pulmonary arterial remodeling revealed by microfocal x-ray tomography

    Get PDF
    Animal models and micro-CT imaging are useful for understanding the functional consequences of, and identifying the genes involved in, the remodeling of vascular structures that accompanies pulmonary vascular disease. Using a micro-CT scanner to image contrast-enhanced arteries in excised lungs from fawn hooded rats (a strain genetically susceptible to hypoxia induced pulmonary hypertension), we found that portions of the pulmonary arterial tree downstream from a given diameter were morphometrically indistinguishable. This \u27self-consistency\u27 property provided a means for summarizing the pulmonary arterial tree architecture and mechanical properties using a parameter vector obtained from measurements of the contiguous set of vessel segments comprising the longest (principal) pathway and its branches over a range of vascular pressures. This parameter vector was used to characterize the pulmonary vascular remodeling that occurred in rats exposed to a hypoxic (11.5% oxygen) environment and provided the input to a hemodynamic model relating structure to function. The major effect of the remodeling was a longitudinally (pulmonary artery to arterioles) uniform decrease in vessel distensibility that resulted in a 90% increase in arterial resistance. Despite the almost uniform change in vessel distensibility, over 50% of the resistance increase was attributable to vessels with unstressed diameters less than 125 microns

    Micro-CT Image-Derived Metrics Quantify Arterial Wall Distensibility Reduction in a Rat Model of Pulmonary Hypertension

    Get PDF
    We developed methods to quantify arterial structural and mechanical properties in excised rat lungs and applied them to investigate the distensibility decrease accompanying chronic hypoxia-induced pulmonary hypertension. Lungs of control and hypertensive (three weeks 11% O2) animals were excised and a contrast agent introduced before micro-CT imaging with a special purpose scanner. For each lung, four 3D image data sets were obtained, each at a different intra-arterial contrast agent pressure. Vessel segment diameters and lengths were measured at all levels in the arterial tree hierarchy, and these data used to generate features sensitive to distensibility changes. Results indicate that measurements obtained from 3D micro-CT images can be used to quantify vessel biomechanical properties in this rat model of pulmonary hypertension and that distensibility is reduced by exposure to chronic hypoxia. Mechanical properties can be assessed in a localized fashion and quantified in a spatially-resolved way or as a single parameter describing the tree as a whole. Micro-CT is a nondestructive way to rapidly assess structural and mechanical properties of arteries in small animal organs maintained in a physiological state. Quantitative features measured by this method may provide valuable insights into the mechanisms causing the elevated pressures in pulmonary hypertension of differing etiologies and should become increasingly valuable tools in the study of complex phenotypes in small-animal models of important diseases such as hypertension
    corecore