2,841 research outputs found

    Coherent Perfect Rotation

    Full text link
    Two classes of conservative, linear, optical rotary effects (optical activity and Faraday rotation) are distinguished by their behavior under time reversal. In analogy with coherent perfect absorption, where counterpropagating light fields are controllably converted into other degrees of freedom, we show that only time-odd (Faraday) rotation is capable of coherent perfect rotation in a linear and conservative medium, by which we mean the complete transfer of counterpropagating coherent light fields into their orthogonal polarization. This highlights the necessity of time reversal odd processes (not just absorption) and coherence in perfect mode conversion and may inform device design.Comment: 4 pages, 2 figure

    Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes.

    Get PDF
    DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival

    High accuracy transfer printing of single-mode membrane silicon photonic devices

    Get PDF
    A transfer printing (TP) method is presented for the micro-assembly of integrated photonic devices from suspended membrane components. Ultra thin membranes with thickness of 150nm are directly printed without the use of mechanical support and adhesion layers. By using a correlation alignment scheme vertical integration of single-mode silicon waveguides is achieved with an average placement accuracy of 100±70nm. Silicon (Si) μ-ring resonators are also fabricated and show controllable optical coupling by varying the lateral absolute position to an underlying Si bus waveguide

    Corticospinal excitability following short-term motor imagery training of a strength task

    Full text link
    Motor imagery and actual movement engage similar neural structures, however, whether they produce similar training-related corticospinal adaptations has yet to be established. The aim of this study was to compare changes in strength and corticospinal excitability following short-term motor imagery strength training and short-term strength training. Transcranial magnetic stimulation (TMS) was applied over the contralateral motor cortex (M1) to elicit motor-evoked potentials in the dominant biceps brachii muscle prior to and following 3-week strength training using actual bicep curls or motor imagery of bicep curls. The strength training (n = 6) and motor imagery (n = 6) groups underwent three supervised training sessions per week for 3 weeks. Participants completed four sets of six to eight repetitions (actual or imagined) at a training load of 80% of their one-repetition maximum. The control group (n = 6) were required to maintain their current level of physical activity. Both training groups exhibited large performance gains in strength (p < 0.001; strength training 39% improvement, imagery 16% improvement), which were significantly different between groups (p = 0.027). TMS revealed that the performance improvements observed in both imagery and strength training were accompanied by increases in corticospinal excitability (p < 0.001), however, these differences were not significantly different between groups (p = 0.920). Our findings suggest that both strength training and motor imagery training utilised similar neural substrates within the primary M1, however, strength training resulted in greater gains in strength than motor imagery strength training. This difference in strength increases may be attributed to adaptations during strength training that are not confined to the primary M1. These findings have theoretical implications for functional equivalent views of motor imagery as well as important therapeutic implications

    Efficiency of broadband four-wave mixing wavelength conversion using semiconductor traveling-wave amplifiers

    Get PDF
    We present a theoretical analysis and experimental measurements of broadband optical wavelength conversion by four-wave mixing in semiconductor traveling-wave amplifiers. In the theoretical analysis, we obtain an analytical expression for the conversion efficiency. In the experiments, both up and down-conversion efficiencies are measured as a function of wavelength shift for shifts up to 27 nm. The experimental data are well explained by the theoretical calculation. The observed higher conversion efficiency for wavelength down-conversion is believed to be caused by phase interferences that exist between various mechanisms contributing to the four-wave mixing process

    The tip-sample water bridge and light emission from scanning tunnelling microscopy

    Full text link
    Light emission spectrum from a scanning tunnelling microscope (LESTM) is investigated as a function of relative humidity and shown to be a novel and sensitive means for probing the growth and properties of a water meniscus in the nm-scale. An empirical model of the light emission process is formulated and applied successfully to replicate the decay in light intensity and spectral changes observed with increasing relative humidity. The modelling indicates a progressive water filling of the tip-sample junction with increasing humidity or, more pertinently, of the volume of the localized surface plasmons responsible for light emission; it also accounts for the effect of asymmetry in structuring of the water molecules with respect to polarity of the applied bias. This is juxtaposed with the case of a non-polar liquid in the tip-sample nano cavity where no polarity dependence of the light emission is observed. In contrast to the discrete detection of the presence/absence of water bridge in other scanning probe experiments by measurement of the feedback parameter for instrument control LESTM offers a means of continuously monitoring the development of the water bridge with sub-nm sensitivity. The results are relevant to applications such as dip-pen nanolithography and electrochemical scanning probe microscopy

    Terahertz four-wave mixing spectroscopy for study of ultrafast dynamics in a semiconductor optical amplifier

    Get PDF
    Ultrafast dynamics in a 1.5-µm tensile-strained quantum-well optical amplifier has been studied by highly nondegenerate four-wave mixing at detuning frequencies up to 1.7 THz. Frequency response data indicate the presence of two ultrafast physical processes with characteristic relaxation lifetimes of 650 fs and <100 fs. The longer time constant is believed to be associated with the dynamic carrier heating effect. This is in agreement with previous time-domain pump-probe measurements using ultrashort optical pulses
    corecore