1,502 research outputs found

    Upregulation of Id1 by Epstein-Barr Virus-encoded LMP1 confers resistance to TGFβ-mediated growth inhibition

    Get PDF
    BACKGROUND: Epstein-Barr virus (EBV)-encoded LMP1 protein is commonly expressed in nasopharyngeal carcinoma (NPC). LMP1 is a prime candidate for driving tumourigenesis given its ability to activate multiple signalling pathways and to alter the expression and activity of variety of downstream targets. Resistance to TGFβ-mediated cytostasis is one of the growth transforming effects of LMP1. Of the downstream targets manipulated by LMP1, the induction of Id1 and inactivation of Foxo3a appear particularly relevant to LMP1-mediated effects. Id1, a HLH protein is implicated in cell transformation and plays a role in cell proliferation, whilst Foxo3a, a transcription factor controls cell integrity and homeostasis by regulating apoptosis. The mechanism(s) by which LMP1 induces these effects have not been fully characterised. RESULTS: In this study, we demonstrate that the ability of LMP1 to induce the phosphorylation and inactivation of Foxo3a is linked to the upregulation of Id1. Furthermore, we show that the induction of Id1 is essential for the transforming function of LMP1 as over-expression of Id1 increases cell proliferation, attenuates TGFβ-SMAD-mediated transcription and renders cells refractory to TGFβ-mediated cytostasis. Id1 silencing in LMP1-expressing epithelial cells abolishes the inhibitory effect of LMP1 on TGFβ-mediated cell growth arrest and reduces the ability of LMP1 to attenuate SMAD transcriptional activity. In response to TGFβ stimulation, LMP1 does not abolish SMAD phosphorylation but inhibits p21 protein expression. In addition, we found the induction of Id1 in LMP1-expressing cells upon stimulation by TGFβ. We provide evidence that LMP1 suppresses the transcriptional repressor ATF3, possibly leading to the TGFβ-induced Id1 upregulation. CONCLUSION: The current data provide novel information regarding the mechanisms by which LMP1 suppresses TGFβ-induced cytostasis, highlighting the importance of Id1 in LMP1 mediated cell transformatio

    The Transmembrane Domains of the EBV-Encoded Latent Membrane Protein 1 (LMP1) Variant CAO Regulate Enhanced Signalling Activity

    Get PDF
    AbstractSequence variants of the Epstein–Barr virus (EBV)-encoded latent membrane protein-1 (LMP1) have been reported in association with EBV-linked malignancies but little is known about their effects on signalling pathways and phenotype. We have examined the ability of the nasopharyngeal carcinoma (NPC)-derived variant, CAO-LMP1 to activate the transcription factors NF-κB and AP-1 in epithelial cells. In this study, transient expression of CAO-LMP1 was found to activate higher levels of NF-κB and AP-1 than the prototype B95.8-LMP1 in human embryonic kidney (HEK) 293 cells and SV40-transformed keratinocytes (SVK). In addition, pulse–chase analysis revealed that CAO-LMP1 has a longer half-life than B95.8-LMP1. Chimera studies localised these phenomena to the transmembrane domains of CAO-LMP1, suggesting that this enhanced signalling capacity may be a consequence of its prolonged half-life. The ability of CAO-LMP1 to activate higher levels of NF-κB and AP-1 may contribute to its potent transforming properties

    Noise thresholds for optical cluster-state quantum computation

    Get PDF
    In this paper we do a detailed numerical investigation of the fault-tolerant threshold for optical cluster-state quantum computation. Our noise model allows both photon loss and depolarizing noise, as a general proxy for all types of local noise other than photon loss noise. We obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible for photon loss probabilities less than 0.003, and for depolarization probabilities less than 0.0001. Our fault-tolerant protocol involves a number of innovations, including a method for syndrome extraction known as telecorrection, whereby repeated syndrome measurements are guaranteed to agree. This paper is an extended version of [Dawson et al., Phys. Rev. Lett. 96, 020501].Comment: 28 pages. Corrections made to Table I

    A practical scheme for quantum computation with any two-qubit entangling gate

    Get PDF
    Which gates are universal for quantum computation? Although it is well known that certain gates on two-level quantum systems (qubits), such as the controlled-not (CNOT), are universal when assisted by arbitrary one-qubit gates, it has only recently become clear precisely what class of two-qubit gates is universal in this sense. Here we present an elementary proof that any entangling two-qubit gate is universal for quantum computation, when assisted by one-qubit gates. A proof of this important result for systems of arbitrary finite dimension has been provided by J. L. and R. Brylinski [arXiv:quant-ph/0108062, 2001]; however, their proof relies upon a long argument using advanced mathematics. In contrast, our proof provides a simple constructive procedure which is close to optimal and experimentally practical [C. M. Dawson and A. Gilchrist, online implementation of the procedure described herein (2002), http://www.physics.uq.edu.au/gqc/].Comment: 3 pages, online implementation of procedure described can be found at http://www.physics.uq.edu.au/gqc

    Proteins associated with pancreatic cancer survival in patients with resectable pancreatic ductal adenocarcinoma.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease with a dismal prognosis. However, while most patients die within the first year of diagnosis, very rarely, a few patients can survive for >10 years. Better understanding the molecular characteristics of the pancreatic adenocarcinomas from these very-long-term survivors (VLTS) may provide clues for personalized medicine and improve current pancreatic cancer treatment. To extend our previous investigation, we examined the proteomes of individual pancreas tumor tissues from a group of VLTS patients (survival ≥10 years) and short-term survival patients (STS, survival <14 months). With a given analytical sensitivity, the protein profile of each pancreatic tumor tissue was compared to reveal the proteome alterations that may be associated with pancreatic cancer survival. Pathway analysis of the differential proteins identified suggested that MYC, IGF1R and p53 were the top three upstream regulators for the STS-associated proteins, and VEGFA, APOE and TGFβ-1 were the top three upstream regulators for the VLTS-associated proteins. Immunohistochemistry analysis using an independent cohort of 145 PDAC confirmed that the higher abundance of ribosomal protein S8 (RPS8) and prolargin (PRELP) were correlated with STS and VLTS, respectively. Multivariate Cox analysis indicated that 'High-RPS8 and Low-PRELP' was significantly associated with shorter survival time (HR=2.69, 95% CI 1.46-4.92, P=0.001). In addition, galectin-1, a previously identified protein with its abundance aversely associated with pancreatic cancer survival, was further evaluated for its significance in cancer-associated fibroblasts. Knockdown of galectin-1 in pancreatic cancer-associated fibroblasts dramatically reduced cell migration and invasion. The results from our study suggested that PRELP, LGALS1 and RPS8 might be significant prognostic factors, and RPS8 and LGALS1 could be potential therapeutic targets to improve pancreatic cancer survival if further validated

    MOLLI T1 mapping versus T2 W-SPAIR at 3T : myocardial area at risk measurements and the influence of microvascular obstruction

    Get PDF
    Funding Information: This study was supported by a Medical Research Council (UK) grant, as a sub-study of Nitrites in Acute Myocardial Infarction, NCT01388504.Peer reviewe

    A global view of the oncogenic landscape in nasopharyngeal carcinoma : an integrated analysis at the genetic and expression levels

    Get PDF
    Previous studies have reported that the tumour cells of nasopharyngeal carcinoma (NPC) exhibit recurrent chromosome abnormalities. These genetic changes are broadly assumed to lead to changes in gene expression which are important for the pathogenesis of this tumour. However, this assumption has yet to be formally tested at a global level. Therefore a genome wide analysis of chromosome copy number and gene expression was performed in tumour cells micro-dissected from the same NPC biopsies. Cellular tumour suppressor and tumour-promoting genes (TSG, TPG) and Epstein-Barr Virus (EBV)-encoded oncogenes were examined. The EBV-encoded genome maintenance protein EBNA1, along with the putative oncogenes LMP1, LMP2 and BARF1 were expressed in the majority of NPCs that were analysed. Significant downregulation of expression in an average of 76 cellular TSGs per tumour was found, whilst a per-tumour average of 88 significantly upregulated, TPGs occurred. The expression of around 60% of putative TPGs and TSGs was both up-and down-regulated in different types of cancer, suggesting that the simplistic classification of genes as TSGs or TPGs may not be entirely appropriate and that the concept of context-dependent onco-suppressors may be more extensive than previously recognised. No significant enrichment of TPGs within regions of frequent genomic gain was seen but TSGs were significantly enriched within regions of frequent genomic loss. It is suggested that loss of the FHIT gene may be a driver of NPC tumourigenesis. Notwithstanding the association of TSGs with regions of genomic loss, on a gene by gene basis and excepting homozygous deletions and high-level amplification, there is very little correlation between chromosomal copy number aberrations and expression levels of TSGs and TPGs in NPC

    MGMT promoter methylation testing to predict overall survival in people with glioblastoma treated with temozolomide: a comprehensive meta-analysis based on a Cochrane Systematic Review

    Get PDF
    BACKGROUND: The DNA repair protein O6 methylguanine-DNA methyltransferase (MGMT) causes resistance of tumour cells to alkylating agents. It is a predictive biomarker in high grade gliomas treated with temozolomide, however there is no consensus on which test method, methylation sites, and cut-off values to use. METHODS: We performed a Cochrane Review to examine studies using different techniques to measure MGMT and predict survival in glioblastoma patients treated with temozolomide. Eligible longitudinal studies included adults with glioblastoma treated with temozolomide with or without radiotherapy, or surgery; where MGMT status was determined in tumour tissue, and assessed by one or more technique; and where overall survival was an outcome parameter, with sufficient information to estimate hazard ratios. Two or more methods were compared in 32 independent cohorts with 3474 patients. RESULTS: Methylation-specific PCR (MSP) and pyrosequencing (PSQ) techniques were more prognostic than immunohistochemistry for MGMT protein, and PSQ is a slightly better predictor than MSP. CONCLUSIONS: We cannot draw strong conclusions about use of frozen tissue versus formalin-fixed paraffin embedded in MSP and PSQ. Also, our meta-analysis does not provide strong evidence about the best CpG sites or threshold. MSP has been studied mainly for CpG sites 76-80 and 84-87 and Pyrosequencing at CpG sites ranging from 72 to 95. A cut-off threshold of 9% for CpG sites 74-78 performed better than higher thresholds of 28% or 29% in two of three good-quality studies. 190 studies were identified presenting hazard ratios from survival analysis in patients in which MGMT methylation was measured by one technique only

    The EBV-Encoded Oncoprotein, LMP1, Recruits and Transforms Fibroblasts via an ERK-MAPK-Dependent Mechanism

    Get PDF
    open access articleLatent membrane protein 1 (LMP1), the major oncoprotein encoded by Epstein–Barr virus (EBV), is expressed at widely variable levels in undifferentiated nasopharyngeal carcinoma (NPC) biopsies, fueling intense debate in the field as to the importance of this oncogenic protein in disease pathogenesis. LMP1-positive NPCs are reportedly more aggressive, and in a similar vein, the presence of cancer-associated fibroblasts (CAFs) surrounding “nests” of tumour cells in NPC serve as indicators of poor prognosis. However, there is currently no evidence linking LMP1 expression and the presence of CAFs in NPC. In this study, we demonstrate the ability of LMP1 to recruit fibroblasts in vitro in an ERK-MAPK-dependent mechanism, along with enhanced viability, invasiveness and transformation to a myofibroblast-like phenotype. Taken together, these findings support a putative role for LMP1 in recruiting CAFs to the tumour microenvironment in NPC, ultimately contributing to metastatic disease
    corecore