11 research outputs found

    Allergic inflammation in lungs and nasal epithelium of rat model is regulated by tissue-specific miRNA expression

    No full text
    Introduction: Atopic asthma and allergic rhinitis are common chronic inflammatory diseases affecting lower airways and nasal mucosa, respectively. Several reports demonstrated frequent co-occurrence of these two diseases, however, the exact molecular mechanism has not been described. The present study aimed to investigate if small non-coding RNA might be responsible for the co-occurrence of asthma and allergic rhinitis in an animal model of allergic airway inflammation. Materials and methods: As an in vivo model of allergic airway inflammation, we used Brown Norway rats exposed intranasally to house dust mite (HDM). Histological analysis, total IgE concentration, eosinophil counts and iNOS gene expression were determined to confirm inflammatory changes. Small RNA sequencing in the lung tissue and nasal epithelium was performed with TruSeq Small RNA Library Preparation Kit and analyzed using the BaseSpace tool. Validation of sequencing results was performed using qPCR. To assess the functional role of hsa-miR-223–3p, we transfected normal human bronchial epithelial (NHBE) cells with specific LNA-inhibitor and measured phosphorylated protein level of NF-kB with ELISA. Expression analysis of NF-kB pathway-related genes was performed using qPCR with SYBR Green and analyzed in DataAssist v3.01. Statistical analysis were done with STATISTICA version 13. Results: We found 9 miRNA genes differentially expressed in the lungs of allergic rats. In nasal epithelium, only rno-miR-184 was upregulated in animals exposed to HDM. Validation with qPCR confirmed increased expression only for rno-miR-223–3p in the lungs from allergic rats. The expression of this miRNA was also increased in normal bronchial epithelial ALI cell culture stimulated with IL-13, but not in cells cultured in monolayer due to the low mRNA level of IL13RA1 and IL13RA2. Transfecting NHBE cells with hsa-miR-223–3p inhibitor increased the amount of phosphorylated NF-kB protein level and expression of MUC5AC, CCL24 and TSLP genes. Conclusions: These findings suggest that miRNAs that regulate allergic inflammation in the lungs and nasal epithelium are specific for upper and lower airways. Furthermore, our study provides new insight on the role of hsa-miR-223–3p, that via targeting NF-kB signaling pathway, regulates the expression of MUC5AC, CCL24 and TSLP. Taken together, our study suggests that miR-223–3p is a regulator of allergic inflammation and could potentially be used to develop novel and targeted therapy for asthma

    Changes in MOTS-c Level in the Blood of Pregnant Women with Metabolic Disorders

    No full text
    MOTS-c peptide is a member of the group of mitochondria-derived peptides (MDP). It is a product of the open reading frame in the 12S RNA gene. Due to its features and functions in the body, this peptide is classified as a hormone. The first publications indicated that this hormone improves insulin sensitivity and lowers body weight in obese animals. This suggests that it may be an important peptide in maintaining the body’s energy homeostasis. The aim of our work was to investigate the potential role of MOTS-c peptide during pregnancy, which is a condition prone to metabolic disorders. The research covered healthy, obese women and women with thyroid disorders. The obtained results indicated an increase in the concentration of MOTS-c in the blood of mothers and newborns in the obese group as compared to the healthy control group and a corresponding decrease in the concentration of this peptide in mothers and newborns in the group with hypothyroidism compared to the obese group. Moreover, we also observed a strong positive correlation between the concentration of MOTS-c in maternal blood and in umbilical cord blood. In summary, the MOTS-c peptide shows changes in blood concentration in various physiological states and may, in the future, become an important tool in the fight against metabolic diseases such as obesity or type 2 diabetes

    Spexin Promotes the Proliferation and Differentiation of C2C12 Cells In Vitro—The Effect of Exercise on SPX and SPX Receptor Expression in Skeletal Muscle In Vivo

    No full text
    SPX (spexin) and its receptors GalR2 and GalR3 (galanin receptor subtype 2 and galanin receptor subtype 3) play an important role in the regulation of lipid and carbohydrate metabolism in human and animal fat tissue. However, little is still known about the role of this peptide in the metabolism of muscle. The aim of this study was to determine the impact of SPX on the metabolism, proliferation and differentiation of the skeletal muscle cell line C2C12. Moreover, we determined the effect of exercise on the SPX transduction pathway in mice skeletal muscle. We found that increased SPX, acting via GalR2 and GalR3 receptors, and ERK1/2 phosphorylation stimulated the proliferation of C2C12 cells (p < 0.01). We also noted that SPX stimulated the differentiation of C2C12 by increasing mRNA and protein levels of differentiation markers Myh, myogenin and MyoD (p < 0.01). SPX consequently promoted myoblast fusion into the myotubule (p < 0.01). Moreover, we found that, in the first stage (after 2 days) of myocyte differentiation, GalR2 and GalR3 were involved, whereas in the last stage (day six), the effect of SPX was mediated by the GalR3 isoform. We also noted that exercise stimulated SPX and GalR2 expression in mice skeletal muscle as well as an increase in SPX concentration in blood serum. These new insights may contribute to a better understanding of the role of SPX in the metabolism of skeletal muscle

    Effect of Elderberry (Sambucus nigra L.) Extract Supplementation in STZ-Induced Diabetic Rats Fed with a High-Fat Diet

    No full text
    Elderberry (Sambucus nigra L.) lipophilic and polar extract dietary supplementation effects were evaluated according to diabetes management indices, using an in vivo model. A research pipeline was constructed, that ranged from extract preparation, partial chemical characterization and toxicity evaluation, to examining the elderberry extract dietary supplementation effects on biofluid and tissues. Extracts toxicity was screened using an Aliivibrio fischeri bioluminescence model. A concentration of up to 60 mg/L was selected, and rat doses for oral supplementation were computed applying the interspecies correlation between A. fischeri and rats. Wistar type 2 diabetic rats, induced by streptozotocin (STZ), were fed a high-fat diet and supplemented for 4 weeks at doses of 190 and 350 mg/kg body weight/day of lipophilic and polar extract, respectively. As far as we know, lipophilic elderberry extract supplementation was assessed for the first time, while polar extract was administrated at higher doses and for a shorter period compared to previous studies, aiming to evaluate subacute supplementation effects. The polar extract modulated glucose metabolism by correcting hyperglycemia, while the lipophilic extract lowered insulin secretion. Both extracts lowered insulin resistance, without remarkable alterations to hematological indices, sera lipids and sera and tissular trace element homeostasis. In conclusion, elderberries are a potential source of bioactive compounds for formulations to be used as co-adjuvants in diabetes management

    The Role of Peptide Hormones Discovered in the 21st Century in the Regulation of Adipose Tissue Functions

    No full text
    Peptide hormones play a prominent role in controlling energy homeostasis and metabolism. They have been implicated in controlling appetite, the function of the gastrointestinal and cardiovascular systems, energy expenditure, and reproduction. Furthermore, there is growing evidence indicating that peptide hormones and their receptors contribute to energy homeostasis regulation by interacting with white and brown adipose tissue. In this article, we review and discuss the literature addressing the role of selected peptide hormones discovered in the 21st century (adropin, apelin, elabela, irisin, kisspeptin, MOTS-c, phoenixin, spexin, and neuropeptides B and W) in controlling white and brown adipogenesis. Furthermore, we elaborate how these hormones control adipose tissue functions in vitro and in vivo
    corecore