10 research outputs found

    Changes in the Concentration of Carbonyl Compounds during the Alcoholic Fermentation Process Carried out with Saccharomyces cerevisiae Yeast

    Get PDF
    The aim of the study was to determine the influence of the source material and the applied S. cerevisiae strain on the concentrationsof carbonyl fractions in raw spirits. Acetaldehyde was the most common aldehyde found, as it accounted for 88–92% of the total amount of aldehydes. The concentration of acetaldehyde in maize, rye and amaranth mashes was highly correlated with fermentation productivity at a given phase of the process, and reached its highest value of 193.5 mg/l EtOH in the first hours of the fermentation, regardless of the yeast strain applied. The acetaldehyde concentration decreased over the time with the decreasing productivity, reaching its lowest value at the 72nd hour of the process. The final concentration of acetaldehyde depended on the raw material used (ca 28.0 mg/l EtOH for maize mashes, 40.3 mg/l EtOH for rye mashes, and 74.4 mg/l EtOH for amaranth mashes). The effect of the used yeast strain was negligible.The overall concentration of the analyzed aldehydes was only slightly higher: ca 30.3 mg/l EtOH for maize mashes, 47.8 mg/l EtOH for rye mashes, and 83.1 mg/l EtOH for amaranth mashes

    Impact of Lignocellulose Pretreatment By-Products on S. cerevisiae Strain Ethanol Red Metabolism during Aerobic and An-aerobic Growth

    No full text
    Understanding the specific response of yeast cells to environmental stress factors is the starting point for selecting the conditions of adaptive culture in order to obtain a yeast line with increased resistance to a given stress factor. The aim of the study was to evaluate the specific cellular response of Saccharomyces cerevisiae strain Ethanol Red to stress caused by toxic by-products generated during the pretreatment of lignocellulose, such as levulinic acid, 5-hydroxymethylfurfural, furfural, ferulic acid, syringaldehyde and vanillin. The presence of 5-hydroxymethylfurfural at the highest analyzed concentration (5704.8 ± 249.3 mg/L) under aerobic conditions induced the overproduction of ergosterol and trehalose. On the other hand, under anaerobic conditions (during the alcoholic fermentation), a decrease in the biosynthesis of these environmental stress indicators was observed. The tested yeast strain was able to completely metabolize 5-hydroxymethylfurfural, furfural, syringaldehyde and vanillin, both under aerobic and anaerobic conditions. Yeast cells reacted to the presence of furan aldehydes by overproducing Hsp60 involved in the control of intracellular protein folding. The results may be helpful in optimizing the process parameters of second-generation ethanol production, in order to reduce the formation and toxic effects of fermentation inhibitors

    Extracellular Phytase Production by the Wine Yeast S. cerevisiae (Finarome Strain) during Submerged Fermentation

    No full text
    One of the key steps in the production of phytases of microbial origin is selection of culture parameters, followed by isolation of the enzyme and evaluation of its catalytic activity. It was found that conditions for S. cerevisiae yeast culture, strain Finarome, giving the reduction in phytic acid concentration of more than 98% within 24 h of incubation were as follows: pH 5.5, 32 °C, continuous stirring at 80 rpm, the use of mannose as a carbon source and aspartic acid as a source of nitrogen. The highest catalytic activity of the isolated phytase was observed at 37 °C, pH 4.0 and using phytate as substrate at concentration of 5.0 mM. The presence of ethanol in the medium at a concentration of 12% v/v reduces the catalytic activity to above 60%. Properties of phytase derived from S. cerevisiae yeast culture, strain Finarome, indicate the possibility of its application in the form of a cell’s free crude protein isolate for the hydrolysis of phytic acid to improve the efficiency of alcoholic fermentation processes. Our results also suggest a possibility to use the strain under study to obtain a fusant derived with specialized distillery strains, capable of carrying out a highly efficient fermentation process combined with the utilization of phytates

    Microwave-Assisted One-Step Conversion of Wood Wastes into Levulinic Acid

    No full text
    This study aimed to evaluate the use of softwood and hardwood waste for the production of levulinic acid by one-stage conversion using microwave radiation combined with acid catalysis. The analysis demonstrated that the type and concentration of the acid used, the concentration of biomass in the reaction mixture and pressure value had the greatest impact on the yield of levulinic acid. The highest efficiency of carbohydrate conversion to levulinic acid, regardless of the type of raw material, was achieved using a pressure of 225 PSI and sulfuric acid as a catalyst. Maximum yield from biomass, ca. 16.5% for cherry wood chips and ca. 25% for pine chips, was obtained using sulfuric acid at a concentration of 1% v/v and 2% v/v, respectively, for the following process parameters: Exposure time 20 min, biomass concentration 3.3%, and the pressure of 225 PSI. The ratio of actual yield to theoretical yield was high: 64.7% ± 4.5% for pine chips and 43.4% ± 1.0% for cherry wood chips. High efficiency of the presented method of biomass conversion to levulinic acid indicates the possibility of its use for waste management in the wood processing industry. High concentration of levulinic acid in the post-reaction mixture allows for cost-effective extraction and purification of the compound

    Cellulosic Ethanol Production Using Waste Wheat Stillage after Microwave-Assisted Hydrotropic Pretreatment

    No full text
    One of the key elements influencing the efficiency of cellulosic ethanol production is the effective pretreatment of lignocellulosic biomass. The aim of the study was to evaluate the effect of microwave-assisted pretreatment of wheat stillage in the presence of sodium cumene sulphonate (NaCS) hydrotrope used for the production of second-generation bioethanol. As a result of microwave pretreatment, the composition of the wheat stillage biomass changed significantly when compared with the raw material used, before treatment. Microwave-assisted pretreatment with NaCS effectively reduced the lignin content and hemicellulose, making cellulose the dominant component of biomass, which accounted for 42.91 ± 0.10%. In post pretreatment, changes in biomass composition were also visible on FTIR spectra. The peaks of functional groups and bonds characteristic of lignins (C–O vibration in the syringyl ring, asymmetric bending in CH3, and aromatic skeleton C–C stretching) decreased. The pretreatment of the analyzed lignocellulosic raw material with NaCS resulted in the complete conversion of glucose to ethanol after 48 h of the process, with yield (in relation to the theoretical one) of above 91%. The highest observed concentration of ethanol, 23.57 ± 0.10 g/L, indicated the high effectiveness of the method used for the pretreatment of wheat stillage that did not require additional nutrient supplementation

    Potential influence of compounds released in degradation of phytates on the course of alcoholic fermentation of high gravity mashes – simulation with analogs of these compounds

    No full text
    Aim of the study was to evaluate the effect of supplementation of high gravity media with mineral compounds and myo-inositol, at concentration which would be obtained as a result of degradation of phytates present in raw material during alcoholic fermentation. The process of alcoholic fermentation was conducted under laboratory conditions in a 72 h system at 37°C with the use of S. cerevisiae D-2 strain. Calcium chloride proved to be the most effective of all supplements tested. Final ethanol concentration increased by 1.2% v v−1 and the yield of process increased by ca. 7 dm−3 ethanol 100 kg−1 of starch in comparison with control. Selective supplementation with KH2PO4, ZnSO4 and MgSO4 also increased the ethanol concentration, but the effect was accompanied by a deterioration in composition of volatile products. The hydrolysis of phytate complexes with microbial phytases can be an alternative solution to supplementation of HG mashes presented in this work

    Evaluation of various methods of selection of B. subtilis strains capable of secreting surface-active compounds.

    No full text
    The aim of the study was the evaluation of a three-step method for the selection of bacterial strains capable of producing surfactin. The procedure consisted of the following steps: 1.blood agar test, 2. measurement of the surface tension (ST) of the medium using the du Nouy method before and after submerged culture, 3. qualitative and quantitative assessment of surfactin by HPLC. Forty five Bacillus subtilis natto strains producing haemolysis zones (≥3mm) were selected. Nineten of them reduced ST of the medium to ≤ 40 mN/m; in six cases, the reduction was as much as 50%. All indicated strains produced surfactin. Positive correlations (p <0.5) between the percentage reduction of ST of the medium and surfactin concentration (r = 0.44), indicate that this parameter is determinant of the ability to synthesize this compound. The blood agar test has been shown to be useful only as a pre-selection criterion for surfactin producers (18 strains selected by this method reduced ST by only ≤30%). The proposed selection strategy proved effective and made it possible to select the BS15 strain that reduced the ST of the medium to 30.56 ± 0.15 mN/m and simultaneously provided a high concentration of surfactin compared to other strains
    corecore