1,578 research outputs found

    Jeffreys's law for general games of prediction: in search of a theory

    Get PDF
    We are interested in the following version of Jeffreys's law: if two predictors are predicting the same sequence of events and either is doing a satisfactory job, they will make similar predictions in the long run. We give a classification of instances of Jeffreys's law, illustrated with examples.Comment: 12 page

    3.8 Psychrophilic Myxobacteria from Antarctic Soils

    Get PDF

    Evaluation of efficiency improvements and performance of coal-fired power plants with post-combustion CO2 capture

    Get PDF
    The power sector needs to be decarbonised by 2050 to meet the global target for greenhouse gas emission reduction and prevent climate change. With fossil fuels expected to play a vital role in the future energy portfolio and high efficiency penalties related to mature CO2 capture technologies, this research aimed at evaluating the efficiency improvements and alternate operating modes of the coal-fired power plants (CFPP) retrofitted with post-combustion CO2 capture. To meet this aim, process models of the CFPPs, chilled ammonia process (CAP) and calcium looping (CaL) were developed in Aspen Plus® and benchmarked against data available in the literature. Also, the process model of chemical solvent scrubbing using monoethanolamine (MEA) was adapted from previous studies. Base-load analysis of the 580 MWel CFPP retrofits revealed that if novel CAP retrofit configurations were employed, in which a new auxiliary steam turbine was coupled with the boiler feedwater pump for extracted steam pressure control, the net efficiency penalty was 8.7–8.8% points. This was close to the 9.5% points in the MEA retrofit scenario. Conversely, CaL retrofit resulted in a net efficiency penalty of 6.7–7.9% points, depending on the fuel used in the calciner. Importantly, when the optimised supercritical CO2 cycle was used instead of the steam cycle for heat recovery, this figure was reduced to 5.8% points. Considering part-load operation of the 660 MWel CFPP and uncertainty in the process model inputs, the most probable net efficiency penalties of the CaL and MEA retrofits were 9.5% and 11.5% points, respectively. Importantly, in the CaL retrofit scenarios, the net power output was found to be around 40% higher than that of the CFPP without CO2 capture and double than that for the MEA retrofit scenario. Such performance of the CaL retrofit scenario led to higher profit than that of the 660 MWel CFPP without CO2 capture, especially if its inherent energy storage capability was utilised. Hence, this study revealed that CaL has the potential to significantly reduce the efficiency and economic penalties associated with mature CO2 capture technologies

    Process modelling and techno-economic analysis of natural gas combined cycle integrated with calcium looping

    Get PDF
    Calcium looping (CaL) is promising for large-scale CO2 capture in the power generation and industrial sectors due to the cheap sorbent used and the relatively low energy penalties achieved with this process. Because of the high operating temperatures the heat utilisation is a major advantage of the process, since a significant amount of power can be generated from it. However, this increases its complexity and capital costs. Therefore, not only the energy efficiency performance is important for these cycles, but also the capital costs must be taken into account, i.e. techno-economic analyses are required in order to determine which parameters and configurations are optimal to enhance technology viability in different integration scenarios. In this study the integration scenarios of CaL cycles and natural gas combined cycles (NGCC) are explored. The process models of the NGCC and CaL capture plant are developed to explore the most promising scenarios for NGCC-CaL integration with regards to efficiency penalties. Two scenarios are analysed in detail, and show that the system with heat recovery steam generator (HRSG) before and after the capture plant exhibited better performance of 49.1% efficiency compared with that of 45.7% when only one HRSG is located after the capture plant. However, the techno-economic analyses showed that the more energy efficient case, with two HRSGs, implies relatively higher cost of electricity (COE), 44.1€/MWh, when compared to that of the reference plant system (33.1€/MWh). The predicted cost of CO2 avoided for the case with two HRSGS is 29.3 €/ton CO2

    Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future

    Get PDF
    Renewable energy sources and low-carbon power generation systems with carbon capture and storage (CCS) are expected to be key contributors towards the decarbonisation of the energy sector and to ensure sustainable energy supply in the future. However, the variable nature of wind and solar power generation systems may affect the operation of the electricity system grid. Deployment of energy storage is expected to increase grid stability and renewable energy utilisation. The power sector of the future, therefore, needs to seek a synergy between renewable energy sources and low-carbon fossil fuel power generation. This can be achieved via wide deployment of CCS linked with energy storage. Interestingly, recent progress in both the CCS and energy storage fields reveals that technologies such as calcium looping are technically viable and promising options in both cases. Novel integrated systems can be achieved by integrating these applications into CCS with inherent energy storage capacity, as well as linking other CCS technologies with renewable energy sources via energy storage technologies, which will maximise the profit from electricity production, mitigate efficiency and economic penalties related to CCS, and improve renewable energy utilisation

    Techno-economic feasibility assessment of CO2 capture from coal-fired power plants using molecularly imprinted polymer

    Get PDF
    Mature CO2 capture technologies would reduce the net thermal efficiency of the coal-fired power plant by 7–13% points, leading to an electricity cost increase of at least 60%. To minimise the energy-intensity of CO2 capture, novel technologies and CO2 capture materials are being developed. This study assessed the techno-economic feasibility of the CO2 capture system using acrylamide-based molecularly imprinted polymer (MIP) sorbent in a 580 MWel coal-fired power plant retrofit scenario. Under the initial design basis, the net efficiency penalty and the energy penalty of the MIP retrofit scenario were estimated to be 5.3%HHV points and 14.1%, respectively. Furthermore, the cost of CO2 avoided was estimated to be 29.3 £/tCO2. Such techno-economic performance was found to be superior to the CO2 capture system using chemical solvents. The parametric study revealed that the thermodynamic performance of the MIP retrofit scenario is mainly affected by the sorbent capacity, as the net efficiency penalty was found to increase from 4.4 to 8.9%HHV points on reduction of the sorbent capacity from 1 to 0.2 mmol CO2/g. Moreover, the economic performance was not only found to be affected by sorbent capacity, but primarily on the cyclic performance of the MIP sorbent. It was shown that the cost of CO2 avoided would increase linearly with increase of the MIP sorbent make-up at a rate of 6.8 £/tCO2 per 0.1% of sorbent make-up

    Calcium looping combustion for high-efficiency low-emission power generation

    Get PDF
    High-temperature solid looping technologies, such as calcium looping and chemical looping combustion are regarded as emerging CO2 capture technologies with potential to reduce the net efficiency penalties associated with CO2 separation. Importantly, high-temperature operation of these technologies allows utilisation of the high-grade heat for power generation. Building on these emerging technologies, this study intended to establish a new class of high-temperature solid looping combustion technologies for high-efficiency low-emission power generation called calcium looping combustion. Such combustion technology comprises a combustor, as a primary source of heat for indirect heating in a calciner, and a carbonator where CO2 is separated from flue gas leaving the combustor; hence high-grade heat, which can be used for power generation, and a concentrated CO2 stream, which can be either utilised or permanently stored, are generated. The techno-economic performance of calcium looping combustion was comparable to a conventional coal-fired power plant. Depending on whether the concentrated CO2 stream is utilised elsewhere or permanently stored, calcium looping combustion was characterised with a net efficiency gain of 0.7%HHV points or a net efficiency penalty of 2.4%HHV, respectively. Additionally, the cost of CO2 avoided for calcium looping combustion was estimated to be 10.0 €/tCO2 and 33.9 €/tCO2, respectively. Therefore, similarly to chemical looping combustion, calcium looping combustion introduced in this study is a viable high-efficiency low-emission power generation technology that produces a concentrated CO2 stream with no efficiency penalty associated with CO2 separation

    Economic feasibility of calcium looping under uncertainty

    Get PDF
    An emerging calcium looping process has been shown to be a promising alternative to solvent scrubbing, which is regarded as the most mature CO2 capture technology. Its retrofits to coal-fired power plants have the potential to reduce both energy and economic penalties associated with the mature CO2 capture technologies. However, these conclusions have been made based on the deterministic outputs of the economic models that have not considered uncertainties in the model inputs. Therefore, this study incorporates a stochastic approach into the economic analysis of the retrofit of such emerging CO2 capture technology to the coal-fired power plant. The stochastic analysis revealed that levelised cost of electricity (LCOE) and specific total capital requirement were highly affected by the uncertainty in the input variables to the process and economic models. The most probable values for these key economic performance indicators were shown to fall between 75 and 115 €/MWelh, and 2100 and 2300 €/kWel,gross, respectively. Interestingly, the most probable LCOE values for the coal-fired power plant will fall between 50 and 150 €/MWelh. This indicated that the calcium looping retrofit scenario can become economically favoured, mainly due to the high economic penalties incurred by unabated coal-fired power plant associated with carbon tax. Importantly, the outputs of the stochastic economic assessment aligned well with the deterministic results reported in the literature. As the latter were generated using different sets of assumptions regarding the process and economic models, the stochastic approach to the economic assessment can minimise the impact of the model assumptions on estimates of the key economic parameters. Moreover, by indicating the probability of particular outputs, as well as ranking the model input variables according to their influence on the key economic performance, such analysis would allow making more insightful decisions regarding further funding and development of the calcium looping process. Finally, use of the stochastic approach in the economic feasibility assessment enables a more profound and reliable comparison of the different calcium looping retrofit configurations, as well as benchmarking different CO2 capture technologies
    • …
    corecore