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Abstract

We are interested in the following version of Jeffreys’s law: if two pre-

dictors are predicting the same sequence of events and either is doing a

satisfactory job, they will make similar predictions in the long run. We

give a classification of instances of Jeffreys’s law, illustrated with exam-

ples.

1 Introduction

In this paper we are interested in games of prediction for which Jeffreys’s law,
as stated in the abstract, holds. Specific true instances of Jeffreys’s law will be
referred to as Jeffreys theorems.

In Section 2 we define several popular games of prediction and state Jeffreys
theorems for the absolute-loss, square-loss, and bounded square-loss games.
These results serve as illustrations for our taxonomy of Jeffreys theorems;
namely, we distinguish between Jeffreys theorems of level 1 (weakest), level
2 (intermediate), and level 3 (strongest).

In Section 3 we show that in the case of so-called perfectly mixable games
there is no difference between the three levels of Jeffreys theorems. Perfectly
mixable games include, in particular, log-loss games and the bounded square-
loss game.

In the next section, Section 4, we state level 2 Jeffreys theorems, which cover
the log-loss and square-loss games (not necessarily bounded). In combination
with the results of Section 3 this provides us with examples of level 3 Jeffreys
theorems. Some of the results in Section 4 are explicit inequalities, not just
statements of convergence.

The simple method of Section 4 does not work for the absolute-loss game.
In Section 5 we will see that it is still possible to prove a Jeffreys theorem for
this game, albeit only a level 1 one.

Perhaps the first instance of Jeffreys’s law was proved by Blackwell and
Dubins [2]; a pointwise version of their result was established in [3]. Results
similar to ours but stated in terms of the algorithmic theory of randomness
were earlier obtained in [9] (developing [6]) and [5] in the case of the log-loss
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game, and in [11] (in essence developing [8]) in the case of the bounded square-
loss game.

2 Taxonomy and examples of Jeffreys theorems

A game of prediction is a triple (Ω, Γ, ℓ), where Ω and Γ are arbitrary sets,
called the outcome space and prediction space, respectively, and ℓ : Ω × Γ → R

is called the loss function. The game is played according to the following perfect-
information protocol.

Competitive prediction protocol

Players: Nature, Predictor 1, Predictor 2, Sceptic
Protocol:

FOR n = 1, 2, . . .:

Predictor 1 and Predictor 2 announce γ
[1]
n ∈ Γ and γ

[2]
n ∈ Γ.

Sceptic announces γ̃n ∈ Γ.
Nature announces ωn ∈ Ω.

END FOR

Three of the players, two Predictors and one Sceptic, are trying to predict the
outcome ωn to be announced by Nature. Sceptic is just like another Predictor,
but he will be playing a special role in our story. At step n, Predictor 1 and

Predictor 2 issue predictions γ
[1]
n and γ

[2]
n , respectively. The Predictors can

consult each other when making the predictions, and the pair (γ
[1]
n , γ

[2]
n ) can be

regarded as their joint prediction. After the two Predictors have announced,

Sceptic issues his own prediction γ̃n. Then Nature produces ωn. Let L
[k]
N :=

∑N

n=1 ℓ(ωn, γ
[k]
n ) be the cumulative loss to time N of Predictor k, k = 1, 2, and

similarly L̃N for Sceptic.
The absolute-loss game is (R, R, ℓ) where ℓ(ω, γ) := |ω−γ|. The next propo-

sition states our first Jeffreys theorem.

Proposition 1. Sceptic has a strategy in the absolute-loss game that guarantees

lim
N→∞

max





1
∣

∣

∣γ
[1]
N − γ

[2]
N

∣

∣

∣

, L
[1]
N − L̃N , L

[2]
N − L̃N



 = ∞. (1)

As usual, we set 1/0 := ∞ in (1). For the proof of Proposition 1, see Section 5.

We call (1), perhaps with |γ
[1]
N − γ

[2]
N | replaced by a different distance, a level

1 Jeffreys theorem. It says that for a sufficiently distant outcome ωN , N ≫ 1, at
least one of the following three things happen: the two Predictors’ predictions

γ
[1]
N and γ

[2]
N are close to each other; Sceptic greatly outperforms Predictor 1

by time N ; Sceptic greatly outperforms Predictor 2 by time N . The weakness
of this statement is that no “stabilization” is guaranteed along a given infinite
sequence of outcomes ω1ω2 . . .: it is possible that each one of the three terms of
the disjunction will be violated infinitely often.

2



A stronger Jeffreys theorem, which we call a level 2 Jeffreys theorem, would
say that

lim
N→∞

∣

∣

∣γ
[1]
N − γ

[2]
N

∣

∣

∣ = 0 or lim
N→∞

max
(

L
[1]
N − L̃N , L

[2]
N − L̃N

)

= ∞. (2)

An even stronger statement, which we call a level 3 Jeffreys theorem, would be

lim
N→∞

∣

∣

∣
γ

[1]
N − γ

[2]
N

∣

∣

∣
= 0 or lim

N→∞

(

L
[1]
N − L̃N

)

= ∞ or lim
N→∞

(

L
[2]
N − L̃N

)

= ∞.

(3)
The following two propositions give examples of level 2 and level 3 Jeffreys

theorems. The square-loss game is (R, R, ℓ) where ℓ(ω, γ) := (ω − γ)2.

Proposition 2. Sceptic has a strategy in the square-loss game that guaran-
tees (2).

The bounded square-loss game is ([0, 1], [0, 1], ℓ) where ℓ(ω, γ) := (ω − γ)2.
(We fix specific bounds, 0 and 1, for outcomes and predictions, but our results
generalize in a straightforward manner to any other bounds.)

Proposition 3. Sceptic has a strategy in the bounded square-loss game that
guarantees (3).

Proposition 2 will be proved in Section 4, and it will imply Proposition 3 in
combination with results of Section 3.

Counterexample

The bounded absolute-loss game is ([0, 1], [0, 1], ℓ) where ℓ(ω, γ) := |ω − γ|. The
level 3 Jeffreys theorem does not hold for the bounded absolute-loss game:

Proposition 4. Sceptic does not have a strategy that guarantees (3) in the
bounded absolute-loss game.

Proof. Suppose Sceptic has such a strategy and is playing it. Let Nature produce
0 and 1 independently with probability 1/2 each. Predictor 1 always predicts
0 and Predictor 2 always predicts 1. The restriction of Sceptic’s strategy to

ωn ∈ {0, 1} and γ
[1]
n , γ

[2]
n ∈ {0, 1} is automatically measurable. We can see that

L
[1]
n −L̃n and L

[2]
n −L̃n are martingales with bounded increments, and so tend to

∞ with probability zero (see [7], Theorem VII.5.1 and its corollary). Therefore,
(3) happens with probability zero.

The proof shows that Proposition 4 remains true for the restricted game
({0, 1}, [0, 1], ℓ), ℓ(ω, γ) := |ω − γ|.
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3 Reductions between Jeffreys theorems

It appears that the main factor that determines which Jeffreys theorems hold for
a particular game of prediction is the degree of convexity of the game. We might
define a game to be convex if its prediction set Γ is a convex set in a linear space
and its loss function ℓ(ω, γ) is convex in γ ∈ Γ. However, this definition would
be too narrow, since the predictions γ are usually just arbitrary labels. We start
from introducing a much less arbitrary representation of games of prediction.

A canonical prediction is a function λ : Ω → R such that

∃γ ∈ Γ ∀ω ∈ Ω : λ(ω) = ℓ(ω, γ).

The canonical representation of the game (Ω, Γ, ℓ) is the pair (Ω, Λ) where Λ,
called the canonical prediction set, is the set of all canonical predictions. We
will not always distinguish between the game and its canonical representation
and will usually consider games that are non-redundant in the sense that

(λ1, λ2 ∈ Λ & λ1 ≤ λ2) =⇒ λ1 = λ2. (4)

A superprediction (resp. subprediction) is a function λ : Ω → R such that λ ≥ λ′

(resp. λ ≤ λ′) for some canonical prediction λ′. The set of all superpredictions
(resp. subpredictions) will be denoted Λ (resp. Λ) and called the superprediction
set (resp. subprediction set).

We will be interested in three notions of convexity for games of prediction:

• a game is convex if its superprediction set Λ is convex (equivalently, if a
convex mixture of two canonical predictions is always a superprediction);
this condition is always satisfied if Γ is a convex set and the loss function
ℓ(ω, γ) is convex in γ ∈ Γ;

• a game is strictly convex if a non-degenerate convex mixture of two canon-
ical predictions is always an interior point of Λ (in the topology of uniform
convergence);

• a game is perfectly mixable if, for some η > 0, the set e−ηΛ is convex.

For illustrative purposes it is convenient to consider the case where the game
(Ω, Γ, ℓ) is binary, in the sense Ω = {0, 1}. In this case Λ can be represented as
the subset of R

2 consisting of the points (x, y) = (λ(0), λ(1)) where λ ranges over
Λ. An example is given as the curved line in Figure 1 below; the superpredictions
are the points North-East of the line, and the subpredictions are the points
South-West of the line.

It is easy to see that for perfectly mixable prediction games there is no real
difference between the three levels of Jeffreys theorems:

Proposition 5. Suppose Sceptic can guarantee (1) in the competitive prediction
protocol for a perfectly mixable game. Then he can also guarantee (3) (and, a
fortiori, (2)).
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Proof. Consider the generalization of the competitive prediction protocol in
which there are infinitely many Predictors (called Experts and numbered by
k = 1, 2, . . .) instead of just two. Using the Aggregating Algorithm (see, e.g.,
[10], Subsection 2.1), for any sequence p1, p2, . . . of positive weights summing to
1 Sceptic can guarantee that his loss satisfies

L̃N ≤ L
[k]
N + C ln

1

pk

(5)

for all N = 1, 2, . . . and k = 1, 2, . . ., where C is a constant depending on the
prediction game.

Let Sceptic play a strategy that guarantees (1). We will construct a new
strategy for Sceptic that guarantees (3). Consider the following doubly infinite
set of experts:

• Expert (k, 1), k = 1, 2, . . ., plays as Sceptic until the difference L
[1]
n − L̃n

exceeds 2k; as soon as this happens (if it ever happens), he starts playing
as Predictor 1;

• Expert (k, 2) plays as Sceptic until the difference L
[2]
n − L̃n exceeds 2k; as

soon as this happens, he starts playing as Predictor 2.

The weights pk,1 and pk,2 assigned to these experts are pk,1 = pk,2 = 2−k−1.
Applied to these experts, the Aggregating Algorithm provides a new strategy
for Sceptic that guarantees (3). Indeed, suppose the first of the three terms in
(3) is false. Then, by (1), either the second or the third term in (3) becomes
true when lim is replaced by lim sup. Suppose, for concreteness, it is the second

term. For each k, Expert (k, 1)’s loss satisfies L
[k,1]
N < L

[1]
N − 2k from some N

on, and so (5) implies that the Aggregating Algorithm’s loss LN satisfies

LN ≤ L
[k,1]
N + C ln

1

pk,1
< L

[1]
N − 2k + (C ln 2)(k + 1)

for all k and from some N on. Letting k → ∞, we can see that the second term
of (3), with LN in place of L̃N , is true.

Of course, Proposition 5 will continue to hold if the Euclidean distance in
(1), (2), and (3) is replaced by any other distance.

Examples of perfectly mixable games

The bounded square-loss game is perfectly mixable ([10], Subsection 2.4).
Perhaps the most fundamental class of games of prediction is that of log-

loss games. If (Ω, Γ, ℓ) is a log-loss game, Ω is a measurable space with a
fixed σ-finite measure µ (more generally, µ = µn may depend on n and be
announced by a player, say Nature, at the beginning of step n of the game), Γ
is the set of all measurable functions γ : Ω → [0,∞) satisfying

∫

γdµ = 1, and
ℓ(ω, γ) = − lnγ(ω). For log-loss games the loss function is allowed to take value
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∞ (− ln 0 := ∞). A simple and instructive special case to keep in mind is where
µ is the counting measure on a countable Ω. The perfect mixability of log-loss
games is a well-known fact, and the Aggregating Algorithm for them reduces to
the Bayes rule (for details see, e.g., [10], Subsection 2.2).

For other examples of perfectly mixable games (such as the Kullback–Leibler
game and Cover’s game), see [10], Subsection 2.5.

4 Level 2 Jeffreys theorems

If λ1 and λ2 are canonical predictions and α ∈ (−1, 1), we set

D[α](λ1 ‖λ2) :=
4

1 − α2
sup

{

t ∈ R :
1 − α

2
λ1 +

1 + α

2
λ2 − t ∈ Λ

}

(6)

(the lower α-divergence between λ1 and λ2) and

D
[α]

(λ1 ‖λ2) :=
4

1 − α2
inf

{

t ∈ R :
1 − α

2
λ1 +

1 + α

2
λ2 − t ∈ Λ

}

(the upper α-divergence between λ1 and λ2). The lower and upper divergence
make take values −∞ or ∞. We will be mostly interested in lower divergences
(which for many interesting games coincides with upper divergences). In the
case of binary (Ω, Γ, ℓ) this definition is illustrated in Figure 1 (notice that the
difference between lower and upper α-divergences disappears for convex binary
games; in such cases, we will sometimes write D[α](λ1 ‖λ2) for the common

value of D[α](λ1 ‖λ2) and D
[α]

(λ1 ‖λ2) and omit the adjectives “lower” and

“upper”). We will also write D[α](γ1 ‖ γ2) and D
[α]

(γ1 ‖ γ2) for γ1, γ2 ∈ Γ, in
the obvious sense.

Notice that, for strictly convex and non-redundant (in the sense of (4))
games,

D
[α]

(λ1 ‖λ2) ≥ D[α](λ1 ‖λ2) > 0,

for all λ1, λ2 ∈ Λ. For α = 0 the lower (resp. upper) α-divergence is called the
lower (resp. upper) Hellinger distance; the word “distance” is partly explained
by its symmetry (although simplest examples show that there is no continuous

function f such that f(D[0]) or f(D
[0]

) is a metric for every strictly convex
game).

The values of lower and upper α-divergences for α = ±1 are defined as their
limits as α → ±1 when those limits exist. The lower (resp. upper) −1-divergence
is called the lower (resp. upper) Kullback–Leibler divergence and is especially
important.

Remark. It is not difficult to see that upper divergences can be very different
from the corresponding lower divergences even for “nice” (in particular, strictly
convex) games. For example, for the game ([−1, 1], [−1, 1], (ω − γ)4) the lower
and upper Hellinger distances between the predictions −1 and 1 are different, 1
and 7. (Cf. [4], Lemma 3.)
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Figure 1: The interpretation of the α-divergence between canonical predictions
λ1 and λ2 in the binary case: find the mean 1−α

2 λ1 + 1+α
2 λ2 of λ1 and λ2; find

the intersection λ of the prediction set and the slope 1 line passing through the
mean; multiply the horizontal (=vertical) distance between the mean and λ by

4
1−α2 .

The square-loss and log-loss games

In this subsections we will compute lower and upper divergences for two popular
games of prediction defined earlier.

Lemma 1. In the square-loss game,

D[α](γ1 ‖ γ2) = (γ1 − γ2)
2 (7)

for all α ∈ [−1, 1] and γ1, γ2 ∈ R.

Proof. It suffices to consider the case α ∈ (−1, 1). The statement of the lemma
will follow from the fact that, for all ω ∈ R,

1 − α

2
(γ1 − ω)2 +

1 + α

2
(γ2 − ω)2 −

1 − α2

4
(γ1 − γ2)

2

=

(

1 − α

2
γ1 +

1 + α

2
γ2 − ω

)2

.

If we set t1 := γ1−ω and t2 := γ2−ω, the last equality simplifies to the obvious

1 − α

2
t21 +

1 + α

2
t22 −

1 − α2

4
(t1 − t2)

2 =

(

1 − α

2
t1 +

1 + α

2
t2

)2

.
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Lemma 2. In any log-loss game,

D[α](γ1 ‖ γ2) = −
4

1 − α2
ln

∫

Ω

(γ1(ω))
1−α

2 (γ2(ω))
1+α

2 µ(dω) (8)

for all α ∈ (−1, 1) and γ1, γ2 ∈ Γ.

Proof. The left-hand side of (8) can be written as 4
1−α2 t where t is defined from

the condition that, for some γ ∈ Γ and all ω ∈ Ω,

−
1 − α

2
ln γ1(ω) −

1 + α

2
ln γ2(ω) − t = − lnγ(ω).

Deducing
∫

Ω

γdµ =

∫

Ω

(γ1(ω))
1−α

2 (γ2(ω))
1+α

2 µ(dω)et,

substituting 1 for
∫

γdµ, and solving the resulting equation for t, we obtain the
statement of the lemma.

The standard definition of the α-divergence for the log-loss game (see, e.g.,
[1], p. 57) is

D(α)(γ1 ‖ γ2) =
4

1 − α2

(

1 −

∫

Ω

(γ1(ω))
1−α

2 (γ2(ω))
1+α

2 µ(dω)

)

;

it is clear that this will differ little from (8) when γ1 and γ2 are close in a suitable
sense. The inequality lnx ≤ x − 1 implies D(α) ≤ D[α].

Level 2 and level 3 Jeffreys theorems

This is our most general level 2 Jeffreys theorem:

Proposition 6. For each α ∈ (−1, 1) and ǫ > 0 Sceptic has a strategy that
guarantees

1 − α2

4

N
∑

n=1

D[α]
(

γ[1]
n ‖ γ[2]

n

)

≤
1 − α

2
L

[1]
N +

1 + α

2
L

[2]
N − L̃N + ǫ (9)

Proof. The strategy is obvious: according to (6), at step n Sceptic can choose
a canonical prediction λ satisfying

λ ≤
1 − α

2
λ1 +

1 + α

2
λ2 −

1 − α2

4
D[α](λ1 ‖λ2) + ǫ2−n

(λ1 and λ2 being the canonical predictions corresponding to γ
[1]
n and γ

[2]
n ). Sum-

ming over the first N steps, we obtain (9).

8



Specializing (9) to the case α = 0 and the square-loss game gives

1

4

N
∑

n=1

(

γ[1]
n − γ[2]

n

)2

≤
L

[1]
N + L

[2]
N

2
− L̃N + ǫ.

This implies a stronger version of the level 2 Jeffreys theorem (2):

∞
∑

n=1

(

γ[1]
n − γ[2]

n

)2

< ∞ or lim
N→∞

max
(

L
[1]
N − L̃N , L

[2]
N − L̃N

)

= ∞.

In combination with the proof of Proposition 5, this implies the stronger form

∞
∑

n=1

(

γ[1]
n − γ[2]

n

)2

< ∞ or lim
N→∞

(

L
[1]
N − L̃N

)

= ∞ or lim
N→∞

(

L
[2]
N − L̃N

)

= ∞

(10)
of the level 3 Jeffreys theorem (3) for the bounded square-loss game.

For the log-loss game, we obtain (10) with the Hellinger distance

D[0](γ
[1]
n ‖ γ

[2]
n ), or the standard Hellinger distance D(0)(γ

[1]
n ‖ γ

[2]
n ), in place

of (γ
[1]
n − γ

[2]
n )2.

5 Level 1 Jeffreys theorems

The main goal of this section is to prove Proposition 1. In the absolute-loss
game, the divergence between any two predictions is 0, and so the methods of
the previous section are not applicable.

First we describe a strategy for Sceptic that will later be shown to ensure
(1). Let f : [0,∞) → [0, 1/2) be a strictly increasing and concave function
satisfying f(0) = 0 and f(∞) < 1/2; see Figure 2. Later it will be convenient
to extend f to (−∞,∞) by the central symmetry w.r. to the origin O (so that
f : (−∞,∞) → (−1/2, 1/2) is an odd function).

Suppose just before step n = 1, 2, . . . of the competitive prediction protocol

we have Dn−1 := L
[1]
n−1 − L

[2]
n−1 ≥ 0 (the case where L

[1]
n−1 ≤ L

[2]
n−1 will later be

reduced to this one). Sceptic’s move can be represented as

γ̃n := (1 − tn)γ[1]
n + tnγ[2]

n ,

where tn will be chosen later from the interval [0, 1/2]. Set

dn :=
∣

∣

∣
γ[1]

n − γ[2]
n

∣

∣

∣
∈ [0, 1],

L̄n :=
L

[1]
n + L

[2]
n

2
,

ℓ̄n :=
ℓ(ωn, γ

[1]
n ) + ℓ(ωn, γ

[2]
n )

2
.

9





Figure 2: The function f from the proof of Proposition 1.

If the actual outcome ωn is in favour of Predictor 1,

ℓ(ωn, γ[1]
n ) ≤ ℓ(ωn, γ[2]

n ),

the difference L
[1]
n − L

[2]
n between the losses of the two Predictors will decrease

to Dn = Dn−1 − dn and the difference L̃n − L̄n will increase by

ℓ(ωn, γ̃n) − ℓ̄n = (1 − tn)

(

ℓ̄n −
dn

2

)

+ tn

(

ℓ̄n +
dn

2

)

− ℓ̄n =

(

tn −
1

2

)

dn.

So in fact it will decrease as tn ≤ 1/2. Let us set tn := 1/2 − f(Dn−1). The
difference L̃n − L̄n will decrease by the area of the rectangle P3P5P4P1.

If the actual outcome ωn is in favour of Predictor 2,

ℓ(ωn, γ[1]
n ) ≥ ℓ(ωn, γ[2]

n ),

the difference between the losses of the two Predictors will increase to Dn =
Dn−1 + dn and the difference L̃n − L̄n will increase by

ℓ(ωn, γ̃n) − ℓ̄n = (1 − tn)

(

ℓ̄n +
dn

2

)

+ tn

(

ℓ̄n −
dn

2

)

− ℓ̄n

=

(

1

2
− tn

)

dn = f(Dn−1)dn,

i.e., by the area of the rectangle P5P8P7P4.
We can see that in both cases, Dn = Dn−1 ± dn, the difference L̃n − L̄n

increases by
∫ Dn

Dn−1
f minus the area An of a curvilinear triangle (P1P2P4 if

Dn = Dn−1 − dn and P4P7P6 if Dn = Dn−1 + dn). Now extend f to the
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whole of (−∞,∞) as an odd function. Suppose that Dn−1 ≤ 0 and, moreover,
Dn−1 + dn ≤ 0. Applying the same argument as above but with the roles of
Predictor 1 and Predictor 2 interchanged, we can see that the difference L̃n−L̄n

again increases by
∫ Dn

Dn−1
f minus the area An of a curvilinear triangle. It is easy

to check that the difference L̃n − L̄n will change in the same way also in the
case where Dn−1 ≥ 0 but Dn−1 − dn ≤ 0 and in the case where Dn−1 ≤ 0 but
Dn−1 + dn ≥ 0. Since L̃N − L̄N is the cumulative increase in L̃n − L̄n over
n = 1, . . . , N , we can see that

L̃N − L̄N =

∫ DN

0

f −
N

∑

n=1

An.

It remains to consider two cases:
∑

∞

n=1 An < ∞: In this case, AN → 0 and so

max





1
∣

∣

∣γ
[1]
N − γ

[2]
N

∣

∣

∣

, |DN |



 → ∞

as N → ∞. The sequence N = 1, 2, . . . can be split into three subsequences

such that |γ
[1]
N − γ

[2]
N | → 0 along the first, DN → ∞ along the second, and

DN → −∞ along the third. It suffices to show that (1) holds along the
second subsequence (the case of the third subsequence is analogous, and
the case of the first subsequence is trivial). Assuming DN > 0, we can see
that along the second subsequence:

L̃N = L̄N +

∫ DN

0

f −

N
∑

n=1

An

≤
L

[1]
N + L

[1]
N − DN

2
+

∫ DN

0

f ≤ L
[1]
N + DN

(

f(∞) −
1

2

)

,

and so L
[1]
N − L̃N → ∞.

∑

∞

n=1 An = ∞: In this case we have along the subsequence of N for which
DN ≥ 0:

L̃N = L̄N +

∫ DN

0

f −
N

∑

n=1

An

=
L

[1]
N + L

[1]
N − DN

2
+

∫ DN

0

f −

N
∑

n=1

An ≤ L
[1]
N −

N
∑

n=1

An,

and so L
[1]
N − L̃N → ∞. Similarly, L

[2]
N − L̃N → ∞ along the subsequence

of N for which DN ≤ 0. Therefore, (1) holds.
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Convex games

It is easy to see that the proof of Proposition 1 is applicable to any convex game.
For any such game Sceptic has a strategy in the competitive prediction protocol
that guarantees

lim
N→∞

max





1
∣

∣

∣
λ

(

ωN , γ
[1]
N

)

− λ
(

ωN , γ
[2]
N

)∣

∣

∣

, L
[1]
N − L̃N , L

[2]
N − L̃N



 = ∞.
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