2,593 research outputs found
Penetrators (penetrating sondes) and new possibilities for study of the planets
The fields of possible use of penetrators in space research are considered. A survey of the condition of development and plans for use of penetrators abroad is presented and an analysis is given of the significance of scientific problems when probing planets
Gas gain on single wire chambers filled with pure isobutane at low pressure
The gas gain of single-wire chambers filled with isobutane, with cell
cross-section 12x12 mm and wire diameters of 15, 25, 50 and 100 m, has
been measured at pressures ranging 12-92 Torr. Contrary to the experience at
atmospheric pressure, at very low pressures the gas gain on thick wires is
higher than that on thin wires at the same applied high voltage as was recently
shown. Bigger wire diameters should be used in wire chambers operating at very
low pressure if multiple scattering on wires is not an issue.Comment: 9 pages, 6 figure
The oxygen isotope effect on critical temperature in superconducting copper oxides
The isotope effect provided a crucial key to the development of the BCS
(Bardeen-Cooper-Schrieffer) microscopic theory of superconductivity for
conventional superconductors. In superconducting cooper oxides (cuprates)
showing an unconventional type of superconductivity, the oxygen isotope effect
is very peculiar: the exponential coefficient strongly depends on doping level.
No consensus has been reached so far on the origin of the isotope effect in the
cuprates. Here we show that the oxygen isotope effect in cuprates is in
agreement with the bisoliton theory of superconductivity.Comment: 3 pages including 4 figures; version 2 is with minor correction
Cylindrically symmetric solitons in Einstein-Yang-Mills theory
Recently new Einstein-Yang-Mills (EYM) soliton solutions were presented which
describe superconducting strings with Kasner asymptotic (hep-th/0610183). Here
we study the static cylindrically symmetric SU(2) EYM system in more detail.
The ansatz for the gauge field corresponds to superposition of the azimuthal
and the longitudinal components of the color magnetic field. We
derive sum rules relating data on the symmetry axis to asymptotic data and show
that generic asymptotic structure of regular solutions is Kasner. Solutions
starting with vacuum data on the axis generically are divergent. Regular
solutions correspond to some bifurcation manifold in the space of parameters
which has the low-energy limiting point corresponding to string solutions in
flat space (with the divergent total energy) and the high-curvature point where
gravity is crucial. Some analytical results are presented for the low energy
limit, and numerical bifurcation curves are constructed in the gravitating
case. Depending on the parameters, the solution looks like a straight string or
a pair of straight and circular strings. The existence of such non-linear
superposition of two strings becomes possible due to self-interaction terms in
the Yang-Mills action which suppress contribution of the circular string near
the polar axis.Comment: 21 pages, 11 figure
Quadrupole transitions near interface: general theory and application to atom inside a planar cavity
Quadrupole radiation of an atom in an arbitrary environment is investigated
within classical as well as quantum electrodynamical approaches. Analytical
expressions for decay rates are obtained in terms of Green function of Maxwell
equations. The equivalence of both approaches is shown. General expressions are
applied to analyze the quadrupole decay rate of an atom placed between two half
spaces with arbitrary dielectric constant. It is shown that in the case when
the atom is close to the surface, the total decay rate is inversely
proportional to the fifth power of distance between an atom and a plane
interface.Comment: 18 pages, 7 figure
Non-Markovian quantum state diffusion for absorption spectra of molecular aggregates
In many molecular systems one encounters the situation where electronic
excitations couple to a quasi-continuum of phonon modes. That continuum may be
highly structured e.g. due to some weakly damped high frequency modes. To
handle such a situation, an approach combining the non-Markovian quantum state
diffusion (NMQSD) description of open quantum systems with an efficient but
abstract approximation was recently applied to calculate energy transfer and
absorption spectra of molecular aggregates [Roden, Eisfeld, Wolff, Strunz, PRL
103 (2009) 058301]. To explore the validity of the used approximation for such
complicated systems, in the present work we compare the calculated
(approximative) absorption spectra with exact results. These are obtained from
the method of pseudomodes, which we show to be capable of determining the exact
spectra for small aggregates and a few pseudomodes. It turns out that in the
cases considered, the results of the two approaches mostly agree quite well.
The advantages and disadvantages of the two approaches are discussed
- …
