149 research outputs found

    Addition to the lichen biota of Franz Josef Land archipelago

    Get PDF
    Forty-four new lichen species and one lichenicolous fungus have been identified as a result of studies of the lichen biota of the Franz Josef Land archipelago. Bryocaulon hyperboreum was reported for the first time from Russia. Gyalecta hypoleuca and Umbilicaria maculata were first identified in the Arctic. Arctocetraria andrejevii, Brodoa oroarctica, Candelariella borealis, Cercidospora stereocaulorum, Massalongia carnosa, Miriquidica nigroleprosa, M. plumbeoatra, Myriolecis zosterae var. palanderi and Polyblastia gothica are new to the Arkhangelsk Region; and Arthrorhaphis citrinella, Mycoblastus alpinus, Racodium rupestre, Rhizocarpon ferax, Scytinium intermedium, Stereocaulon glareosum are new to the Arctic part of the Arkhangelsk Region. Species new to Arkhangelsk Region, Arctic and Russia are supplied with information on distribution in neighboring regions and world and on differences from closely related species. The checklist of the Franz Josef Land archipelago thus includes 277 species and 6 varieties of lichenized and 43 lichenicolous fungi to date

    Second quantization method in the presence of bound states of particles

    Get PDF
    We develop an approximate second quantization method for describing the many-particle systems in the presence of bound states of particles at low energies (the kinetic energy of particles is small in comparison to the binding energy of compound particles). In this approximation the compound and elementary particles are considered on an equal basis. This means that creation and annihilation operators of compound particles can be introduced. The Hamiltonians, which specify the interactions between compound and elementary particles and between compound particles themselves are found in terms of the interaction amplitudes for elementary particles. The nonrelativistic quantum electrodynamics is developed for systems containing both elementary and compound particles. Some applications of this theory are considered.Comment: 35 page

    Сообщества московских районов в социальных медиа: контент и его модерация

    Get PDF
    Cтатья основана на результатах эмпирического исследования медийных сообществ (пабликов и онлайн групп) районов Москвы, цель которого заключалась в выявлении редакторских практик их модераторов, а также формальных и содержательных особенностей публикуемых сообщений. Для ее достижения были использованы методы неформализованных (глубинных) интервью и контент­анализа. Районы крупных населенных пунктов представляют собой одно из типичных и распространенных оснований для формирования сообществ в социальных медиа. Показано, что специфика пабликов и групп районов Москвы заключается в том, что их формирование проходило в условиях повышенного запроса определенной части жителей города на реализацию социальных проектов и реализации принципа «права на город», а также отсутствия официальной деятельности местной власти на данных информационных площадках, связанного с низким уровням адаптивности муниципальных структур к коммуникационным инновациям. В данной ситуации представители власти предпочли действовать в сформировавшемся информационном пространстве инкогнито, через посредников, специализирующихся на современных коммуникационных технологиях и имитирующих позицию медиа активистов, сочтя такую коммуникационную стратегию на данном этапе более эффективной. Выявлены основные задачи, решаемые модераторами рассматриваемых пабликов и онлайн групп, а также тематические и некоторые другие особенности публикуемого контента

    Возрастная динамика нормальных древостоев ольхи серой в таежной зоне северо-востока европейской части России

    Get PDF
    Для организации, планирования и ведения лесного хозяйства на научной основе в насаждениях с преобладанием и участием ольхи серой (Alnus incana (L.) Moench), сформировавшихся в условиях таежной зоны, необходимы достоверные данные о строении, росте и продуктивности древостоев. В настоящее время ощущается острая необходимость в разработке таблиц хода роста для насаждений ольхи серой, так как площади, занятые этой породой, значительно увеличились в результате зарастания заброшенных сельскохозяйственных угодий. Разработка единой системы нормативных и справочных материалов для учета количества, оценки состояния и объема использования насаждений ольхи серой на Европейском Севере России является важной и актуальной задачей. Таблицы хода роста для нормальных древостоев ольхи серой в таежной зоне северо-востока европейской части России ранее не разрабатывались. Цель данного исследования – изучение возрастной динамики нормальных древостоев ольхи серой и составление таблиц хода роста. Использованы 193 модельных дерева ольхи серой, а также данные 175 пробных площадей. Полнота – 1,0. Получены уравнения для определения средней высоты, диаметра и запаса насаждений по классам бонитета. На основе уравнений разработаны таблицы хода роста нормальных древостоев по классам бонитета. Предложенные таблицы будут способствовать повышению точности таксации лесов, дадут возможность объективно оценить лесосырьевые ресурсы наиболее представленных древостоев, прогнозировать их рост при выполнении комплекса работ по охране, защите и воспроизводству лесных ресурсов, повышению экологических функций леса, а также контролировать ведение хозяйства в древостоях. Для цитирования: Третьяков С.В., Коптев С.В., Карабан А.А., Парамонов А.А., Давыдов А.В. Возрастная динамика нормальных древостоев ольхи серой в таежной зоне северо-востока европейской части России // Изв. вузов. Лесн. журн. 2023. № 6. С. 70–80. https://doi.org/10.37482/0536-1036-2023-6-70-8

    Field-Induced Electron Emission from Nanoporous Carbons

    Get PDF
    Influence of fabrication technology on field electron emission properties of nanoporous carbon (NPC) was investigated. Samples of NPC derived from different carbides via chlorination at different temperatures demonstrated similar low-field emission ability with threshold electric field 2-3 V/μm. This property correlated with presence of nanopores with characteristic size 0.5–1.2 nm, determining high values of specific surface area (>800 m2/g) of the material. In most cases, current characteristics of emission were approximately linear in Fowler-Nordheim coordinates (excluding a low-current part near the emission threshold), but the plots’ slope angles were in notable disagreement with the known material morphology and electronic properties, unexplainable within the frames of the classical emission theory. We suggest that the actual emission mechanism for NPC involves generation of hot electrons at internal boundaries and that emission centers may be associated with relatively large (20–100 nm) onion-like particles observed in many microscopic images. Such particles can serve two functions: to provide additional “internal” enhancement of the electric field and to inhibit relaxation of hot charge carriers due to the “phonon bottleneck” effect

    Development of polyresistance in microorganisms during antibiotic therapy in a multidisciplinary hospital during a pandemic COVID-19

    Get PDF
    Background. Irrational and excessive use of antimicrobials drugs (AMD) creates conditions for the development of a global crisis of health systems around the world associated with antibiotic resistance. Aim. To conduct a retrospective study of the impact of the use of AMD on the change in the microbiological landscape and the sensitivity of microorganisms in the conditions of pandemic of the new coronavirus infection (COVID-19) in 2020–2021 in intensive care departments (ICD) of a multidisciplinary hospital. Materials and methods. In the course of the work, strains of microorganisms isolated from patients and from the surfaces of the hospital environment and changes in their sensitivity to significant groups of AMD in ICD for somatic and infectious patients with COVID-19 were compared. The sensitivity of the isolates was evaluated in accordance with the criteria of requirements of European Committee on Antimicrobial Susceptibility Testing – EUCAST, version 10.0, 2020. Results. A total of 1,394 isolates were studied, including 1,379 clinical and 15 isolates from the surfaces of the hospital environment. It was found that in all ICD in 2020–2021, gram-negative microorganisms prevailed in infectious loci in 70% of cases or more. In 2021, in the ICD in infectious patients with COVID-19, the persistent dominance of the Acinetobacter baumannii microorganism was revealed with an increase in the number of poly- and pan-resistant strains – 48.7%. While in the ICD for somatic patients Klebsiella Pneumoniae prevailed among gram-negative microorganisms – 37.5% in 2020 and 43.7% in 2021. It has been shown that in one department or in adjacent departments of the same medical institution, various nosocomial microorganisms with an unequal set of resistance genes and sensitivity to AMD may appear over time. Conclusion. The necessity of conducting constant microbiological monitoring and a passport of the medical department with mandatory registration of not only isolated strains of microorganisms, but also resistance genes in order to optimize the appointment of timely adequate empirical antimicrobial therapy is substantiated. The period of the latter should be as short as possible, and confirmed by convincing clinical signs of bacterial infection, and subsequently by the isolation of nosocomial flora from the biomaterial of critical loci from patients

    Modeling Wind Speed Based on Fractional Ornstein-Uhlenbeck Process

    Get PDF
    The primary task of the design and feasibility study for the use of wind power plants is to predict changes in wind speeds at the site of power system installation. The stochastic nature of the wind and spatio-temporal variability explains the high complexity of this problem, associated with finding the best mathematical modeling which satisfies the best solution for this problem. In the known discrete models based on Markov chains, the autoregressive-moving average does not allow variance in the time step, which does not allow their use for simulation of operating modes of wind turbines and wind energy systems. The article proposes and tests a SDE-based model for generating synthetic wind speed data using the stochastic differential equation of the fractional Ornstein-Uhlenbeck process with periodic function of long-run mean. The model allows generating wind speed trajectories with a given autocorrelation, required statistical distribution and provides the incorporation of daily and seasonal variations. Compared to the standard Ornstein-Uhlenbeck process driven by ordinary Brownian motion, the fractional model used in this study allows one to generate synthetic wind speed trajectories which autocorrelation function decays according to a power law that more closely matches the hourly autocorrelation of actual data. In order to demonstrate the capabilities of this model, a number of simulations were carried out using model parameters estimated from actual observation data of wind speed collected at 518 weather stations located throughout Russia

    Underwater holographic sensor for plankton studies in situ including accompanying measurements

    Get PDF
    The paper presents an underwater holographic sensor to study marine particles—a miniDHC digital holographic camera, which may be used as part of a hydrobiological probe for accompanying (background) measurements. The results of field measurements of plankton are given and interpreted, their verification is performed. Errors of measurements and classification of plankton particles are estimated. MiniDHC allows measurement of the following set of background data, which is confirmed by field tests: plankton concentration, average size and size dispersion of individuals, particle size distribution, including on major taxa, as well as water turbidity and suspension statistics. Version of constructing measuring systems based on modern carriers of operational oceanography for the purpose of ecological diagnostics of the world ocean using autochthonous plankton are discussed. The results of field measurements of plankton using miniDHC as part of a hydrobiological probe are presented and interpreted, and their verification is carried out. The results of comparing the data on the concentration of individual taxa obtained using miniDHC with the data obtained by the traditional method using plankton catching with a net showed a difference of no more than 23%. The article also contains recommendations for expanding the potential of miniDHC, its purpose indicators, and improving metrological characteristics

    Reconciling carbon-stock estimates for the Yedoma region

    Get PDF
    Permafrost soil organic carbon (C) in the Yedoma region comprises a large fraction of the total circumpolar permafrost C pool, yet estimates based on different approaches during the past decade have led to disagreement in the size and composition of the Yedoma region permafrost C pool. This research aims to reconcile different approaches and show that after accounting for thermokarst and fluvial erosion processes of this interglacial period, the Yedoma region C pool (456 ± 45 Pg C) is the sum of 172 ± 19 Pg Holocene-aged C and 284 ± 40 Pg Pleistocene-aged C. The size of the present-day Pleistocene-aged Yedoma C pool was originally estimated to be 450 Pg based on a mean deposit thickness of 25 m, 1×106 km2 areal extent, 2.6% total organic C content, 1.65times103 kg m−3dry bulk density, and 50% volumetric ice wedge content (Zimov et al. 2006). This estimate assumed that 17% of the Last Glacial Maximum yedoma C stock was lost to greenhouse gas production and emission when 50% of yedoma thawed beneath lakes during the Holocene. However, the regional scale yedoma C pool estimate of Zimov et al. (2006) did not include any Holocene C and assumed that all of the 450 Pg C was Pleistocene-aged. In subsequent global permafrost C syntheses, soil organic C content (SOCC, kg C m−2) data from the Northern Circumpolar Soil C Database (NCSCD) and Zimov et al. (2006) were used to estimate the soil organic C pool for the Yedoma region (450 Pg), assuming only Pleistocene-aged yedoma C from 3 to 25 m (407 Pg), and a mixture of C ages in the 0 to 3 m interval (43 Pg). A more recent synthesis of Yedoma-region C stocks based on extensive sampling by Strauss et al. (2013) took into account lower C bulk density values of yedoma, higher organic C concentrations of yedoma, a larger landscape fraction of thermokarst (70% of Yedoma region area), the larger C concentration of thermokarst, and remote-sensing based quantification of ice-wedge volumes. This synthesis produced lower mean- and median-based estimates of Yedoma-region C, 348+73 Pg and 211 +160/-153 Pg respectively. However, Strauss et al. (2013) focused on the remaining undisturbed yedoma and refrozen surface thermokarst deposits and thus did not include taberite deposits, which are the re-frozen remains of Yedoma previously thawed beneath thermokarst lakes and still present in large quantities on the landscape. In our study (Walter Anthony et al. 2014), we measured the dry bulk density directly on 89 yedoma and 311 thermokarst-basin samples, including taberites, collected in four yedoma subregions of the North Siberian Kolyma Lowlands. Multiplying the organic matter content of an individual sample by the same sample’s measured bulk density yielded an organic C bulk density data set for yedoma samples that was normally distributed. Combining our subregion-specific organic C bulk density results with those of Strauss et al. (2013) for other yedoma subregions extending to the far western extent of Siberian yedoma, we determined a mean organic C bulk density of yedoma for the total Yedoma region (26 ± 1.5 kg C m-3), which is similar to that previously suggested by Strauss et al. (2013) (27 kg C m-3 mean based approach; 16 kg C m-3 median based approach). Our estimate of the organic C pool size of undisturbed yedoma permafrost (129 ± 30 Pg Pleistocene C) in the 396,600 ± 39,700 km2 area that has not been degraded by thermokarst since the Last Glacial Maximum is based on this regional-mean C bulk density value. Our calculation also assumes an average yedoma deposit thickness of 25 m and 50% volumetric massive ice wedge content, as in previous estimates (Zimov et al. 2006, NCSCD; Table 1). Similar results found in the recent study of the Yedoma-region C inventory by Strauss et al.(2013) corroborate our estimate of the undisturbed yedoma C inventory. The size of the remaining yedoma C pool was estimated by Strauss et al. (2013) to be 112 Pg (vs. 129 Pg, this study) based on mean parameter values: organic C bulk density 27 kg C cm-3 (vs. 26.2 kg C cm-3 in this study), yedoma deposit thickness 19.4 m (vs. 25 m in this study), Yedoma volumetric ice wedge content 48% (vs. 50% in this study), and thermokarst extent (70% in both studies). The two studies took different approaches for estimating yedoma deposit thicknesses: Strauss et al. (2013) used 22 field sites from Siberia and Alaska with a mean thickness of 19.4 m; our calculations used a thickness value determined from Russian literature (25 ± 5m, references in Walter Anthony et al. 2014). The mean derived from our limited (n=17) field sites was 38 m in the Kolyma region. The two studies further differ slightly in calculating Yedoma-region area: Strauss et al. (2013), which focused on still frozen deposits vulnerable to future thaw, did not include thawed deposits in present-day lakes, but did include deposits in known smaller yedoma occurrences outside the core Yedoma region such as valleys of NW Canada, Chukotka, and the Taymyr Peninsula. Our study focused on the extent of core-yedoma deposits as well as organic-C stored in present-day Yedoma lake deposits. While differences in yedoma thickness and area values can impact upscaling calculations, efforts are underway by the Yedoma region synthesis IPA Action Group (Strauss and colleagues) to analyze more comprehensive data sets and better constrain the values. Based on our approach that includes a differentiation of thermokarst-lake facies, we estimate that 155 Pg Pleistocene-aged organic C is stored in thermokarst-lake basins and thermoerosional gullies in the Yedoma region of Beringia [155 Pg is the sum of 114 Pg in taberite deposits and 41 Pg in various lacustrine facies]. This 155 Pg Pleistocene-aged C represents the remains of yedoma that thawed and partially decomposed beneath and in thermokarst lakes and streams. Altogether we estimate a total Pleistocene-C pool size of 284 ± 40 Pg for the Beringian Yedoma region in the present day as the sum of Pleistocene C in undisturbed yedoma (129 Pg) and in thermokarst basins (155 Pg). Separately, Holocene-aged organic C assimilated and sequestered in deglacial thermokarst basins in the Yedoma-region is 159 ± 24 Pg. Our upscaling is based on the mean C stocks of individual permafrost exposures (Fig. 2e in Walter Anthony et al. 2014), which were normally distributed. To our knowledge, this is the first study to combine a geomorphologic classification of alas facies with C content, including the deeper lacustrine deposits, for the purpose of systematically upscaling to a regional alas C inventory. We did not measure the C content of Holocene terrestrial soils overlying undisturbed yedoma permafrost; however, applying values from the NCSCD in Siberia for Histels (44.3 kg C m-2, 9% of Yedoma region area), Orthels (26.0 kg C m-2, 17% of Yedoma region area) and Turbels (38.4 kg C m-2, 63% of Yedoma region area) to the extent of 1-m surface deposits overlying the area of undisturbed Yedoma permafrost (396,000 ± 39,600 km2), results in 12.9 ± 1.3 Pg of Holocene C. This calculation assumes that the 70/30 ratio of thermokarst to undisturbed yedoma applies across the Histel, Orthel and Turbel cover classes. Altogether, we estimate the Holocene and Pleistocene organic C pool size in the Yedoma region of Beringia as 456 ± 45 Pg (38% Holocene, 62% Pleistocene). Despite the differences in approaches and locations of study sites, similarities in the meanbased estimates of the Yedoma-region organic C pool size between Strauss et al. (2013) and this study corroborate our findings. Not accounting for diagenetically altered organic C from yedoma thawed in situ beneath lakes (taberites), Strauss et al. (2013) estimated 348 Pg C for the regional pool size. Without taberite C, our estimate would be similar (342 Pg C). For our study, focusing on the C balance shifts from the Pleistocene to the end of the Holocene, we show that taberite deposits are an important component and need to be included in the budget as these deposits are a large C pool that represents diagenetically-altered organic C from yedoma thawed in situ beneath lakes (Table 1b). Our estimate of yedoma-derived taberite deposits underlying thermokarst basins (114 Pg C), would bring the Yedoma-region C pool estimate by Strauss et al. (2013) up to 462 Pg C, which is similar to our estimate of 456 Pg C. In summary, the Yedoma-region organic C value (456 ± 45 Pg C, consisting of Pleistocene and Holocene C) determined by this study is similar to that calculated originally by Zimov et al. (2006) to represent only the Pleistocene yedoma C pool (450 Pg). Subsequently, the Pleistocene-aged yedoma C was considered to be 450 Pg C. Pleistocene-aged Yedoma carbon was considered to be >90% of the regional pool by the subsequent NCSCD syntheses for quantification of circumpolar permafrost carbon. The primary difference between the Yedoma-region C pool estimate presented here versus Zimov et al. (2006), which entered the NCSCD syntheses, is that in this study net C gains associated with a widespread thermokarst process are taken into account. The component of Pleistocene yedoma C was reduced in this study by 38% and a new Holocene-thermokarst C pool (159 Pg) was introduced. We lowered the Pleistocene-aged yedoma C pool based on larger, more recent data sets on yedoma’s dry bulk density by this study and Strauss et al. (2013) and based on our more recent map-based analysis showing a 20% larger areal extent of deep thermokarst activity in the Yedoma region. The major implications of this study pertain to the nature and fate of greenhouse gas emissions associated with permafrost thaw in the Yedoma region. Differentiation of the C pool in the Yedoma region (yedoma vs. thermokarst basins) is critical to understanding past and future C dynamics and climate feedbacks. Since a larger fraction of the yedoma landscape has already been degraded by thermokarst during the Holocene (70% instead of 50%), the size of the anaerobically-vulnerable yedoma C pool for the production of methane is 40% lower than that previously calculated. Second, there is concern that permafrost thaw will mobilize and release ’ancient’ organic C to the atmosphere. Assuming average radiocarbon ages of Pleistocene-yedoma and Holocene deposits of 30 kya and 6.5 kya respectively, accounting for the new Holocene-aged thermokarst C pool (159 Pg C) lowers the average age of the current Yedoma-region C pool by about one third. This result is important to global C-cycle modeling since C isotope signatures provide valuable constraints in models. Finally, given differences in permafrost soil organic matter origins for the Pleistocene-aged steppe-tundra yedoma C pool [accumulated under aerobic conditions; froze within decades to centuries after burial; and remained frozen for tens of thousands of years] and the lacustrine Holocene-aged C pool [accumulated predominately under anaerobic conditions and remained thawed for centuries to millennia prior to freezing after lakes drained], it is likely that organic matter degradability differs substantially between these two pools. This has implications for differences in their vulnerability to decomposition and greenhouse gas production under scenarios of permafrost thaw in the future. References: Strauss J., Schirrmeister L, Grosse G, Wetterich W, Ulrich M, Herzschuh U, Hubberten H-W. 2013. The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys. Res. Lett. 40, 6165–6170. Walter Anthony K M, Zimov SA, Grosse G, Jones MC, Anthony P, Chapin III FS, Finlay JC, Mack mC, Davydov S, Frenzel P, Frolking S. 2014. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature, 511, 452-456, DOI:10.1038/nature13560. Zimov,SA, Schuur EAG, Chapin FS. 2006. Permafrost and the global carbon budget. Science 312: 1612–1613
    corecore