1,457 research outputs found

    An Improved Red Spectrum of the Methane or T-dwarf SDSS 1624+0029: Role of the Alkali Metals

    Get PDF
    A Keck~II low resolution spectrum shortward of ome-micron is presented for SDSS 1624+0029, the first field methane or T dwarf discovered in the Sloan Digital Sky Survey. Significant flux is detected down to the spectrum's short wavelength limit of 6200\AA. The spectrum exhibits a broad absorption feature centered at 7700\AA, which we interpret as the K~I 7665/7699 resonance doublet. The observed flux declines shortward of 7000\AA, due most likely to the red wing of the Na~I doublet. Both Cs~I doublet lines are detected more strongly than in an earlier red spectrum. Neither Li~I absorption nor Hα\alpha emission are detected. An exploratory model fit to the spectrum suggests that the shape of the red spectrum can be primarily accounted for by the broad wings of the K~I and Na~I doublets. This behavior is consistent with the argument proffered by Burrows, Marley and Sharp that strong alkali absorption is principally responsible for depressing T dwarf spectra shortward of 1μ\mum. In particular, there seems no compelling reason at this time to introduce dust or an additional opacity source in the atmosphere of the SDSS object. The width of the K~I and strengths of the Cs~I lines also indicate that the Sloan object is warmer than Gl~229B.Comment: accepted March 3, 2000 for Ap.J. Letters, LaTeX, 2 figure

    The 2MASS Wide-Field T Dwarf Search. IV Unting out T dwarfs with Methane Imaging

    Full text link
    We present first results from a major program of methane filter photometry for low-mass stars and brown dwarfs. The definition of a new methane filter photometric system is described. A recipe is provided for the differential calibration of methane imaging data using existing 2MASS photometry. We show that these filters are effective in discriminating T dwarfs from other types of stars, and demonstrate this with Anglo-Australian Telescope observations using the IRIS2 imager. Methane imaging data and proper motions are presented for ten T dwarfs identified as part of the 2MASS "Wide Field T Dwarf Search" -- seven of them initially identified as T dwarfs using methane imaging. We also present near-infrared moderate resolution spectra for five T dwarfs, newly discovered by this technique. Spectral types obtained from these spectra are compared to those derived from both our methane filter observations, and spectral types derived by other observers. Finally, we suggest a range of future programs to which these filters are clearly well suited: the winnowing of T dwarf and Y dwarf candidate objects coming from the next generation of near-infrared sky surveys; the robust detection of candidate planetary-mass brown dwarfs in clusters; the detection of T dwarf companions to known L and T dwarfs via deep methane imaging; and the search for rotationally-modulated time-variable surface features on cool brown dwarfs.Comment: 20 pages. To appear in The Astronomical Journal, Nov. 200

    A Flaring L5 Dwarf: The Nature of H\alpha Emission in Very Low Mass (Sub)Stellar Objects

    Full text link
    Time series spectrophotometry of the L5 dwarf 2MASS 01443536-0716142 showed strong H\alpha emission which declined by nearly 75% in four consecutive exposures. The line was not detected in emission on a spectrum obtained eleven months later. This behavior constrasts with that of 2MASSI J1315309-264951, an L5 dwarf which has shown even stronger H\alpha emission on four separate occasions. The observational database suggests that L dwarfs can be found in such strong flares only occasionally, with a duty cycle of order 1%. In contrast, the few, continuously-strong H\alpha emitters, including PC 0025+0447 and 2MASSI J1237392+652615, must either be (1) objects no older than 10-100 Myrs with continuously-active accretion and/or chromospheres, but which apparently formed in isolation from known young stellar clusters and associations, or (2) objects empowered by a different and unknown mechanism for the H\alpha energy.Comment: 11 pages, 2 figures, Astronomical Journal in press -- Jan 2003 issu

    Substellar Companions to Main Sequence Stars: No Brown Dwarf Desert at Wide Separations

    Full text link
    We use three field L and T dwarfs which were discovered to be wide companions to known stars by the Two Micron All-Sky Survey (2MASS) to derive a preliminary brown dwarf companion frequency. Observed L and T dwarfs indicate that brown dwarfs are not unusually rare as wide (Delta >1000 A.U.) systems to F-M0 main-sequence stars (M>0.5M_sun, M_V<9.5), even though they are rare at close separation (Delta <3 A.U.), the ``brown dwarf desert.'' Stellar companions in these separation ranges are equally frequent, but brown dwarfs are >~ 10 times as frequent for wide than close separations. A brown dwarf wide-companion frequency as low as the 0.5% seen in the brown dwarf desert is ruled out by currently-available observations.Comment: ApJL, in pres

    Discovery of a Very Young Field L Dwarf, 2MASS J01415823-4633574

    Full text link
    While following up L dwarf candidates selected photometrically from the Two Micron All Sky Survey, we uncovered an unusual object designated 2MASS J01415823-4633574. Its optical spectrum exhibits very strong bands of vanadium oxide but abnormally weak absorptions by titanium oxide, potassium, and sodium. Morphologically such spectroscopic characteristics fall intermediate between old, field early-L dwarfs (log(g)~5) and very late M giants (log(g)~0), leading us to favor low gravity as the explanation for the unique spectral signatures of this L dwarf. Such a low gravity can be explained only if this L dwarf is much lower in mass than a typical old field L dwarf of similar temperature and is still contracting to its final radius. These conditions imply a very young age. Further evidence of youth is found in the near-infrared spectrum, including a triangular-shaped H-band continuum reminiscent of young brown dwarf candidates discovered in the Orion Nebula Cluster. Using the above information along with comparisons to brown dwarf atmospheric and interior models, our current best estimate is that this L dwarf has an age of 1-50 Myr and a mass of 6-25 M_Jupiter. The location of 2MASS 0141-4633 on the sky coupled with a distance estimate of ~35 pc and the above age estimate suggests that this object may be a brown dwarf member of either the 30-Myr-old Tucana/Horologium Association or the ~12-Myr-old beta Pic Moving Group.Comment: Accepted for publication in the 10 March 2006 issue (volume 639) of the Astrophysical Journa

    Chromospherically Active Stars. VI. HD 136901 = UV CrB: A Massive Ellipsoidal K Giant Single-Lined Spectroscopic Binary

    Get PDF
    The variable star HD 136901 = UV CrB is a chromospherically active K2 III single-lined spectroscopic binary with an orbital period of 18.665 days. It has modest-strength Ca H and K emission and UV features, while H-alpha is a strong absorption feature containing little or no emission. The inclination of the system is 53 + or - 12 deg. The v sin i of the primary is 42 + or - 2 km/s, resulting in a minimum radius of 15.5 + or - 0.8 solar. When compared with the Roche lobe radius, this results in a mass ratio of 2.90 or larger. Additional constraints indicate that the secondary has a mass between 0.85 and 1.25 solar. Thus, the mass of the primary is at least 2.5 solar and probably is in the range 2.5-4 solar

    WISE J163940.83-684738.6: A Y Dwarf identified by Methane Imaging

    Get PDF
    We have used methane imaging techniques to identify the near-infrared counterpart of the bright WISE source WISEJ163940.83-684738.6. The large proper motion of this source (around 3.0arcsec/yr) has moved it, since its original WISE identification, very close to a much brighter background star -- it currently lies within 1.5" of the J=14.90+-0.04 star 2MASS16394085-6847446. Observations in good seeing conditions using methane sensitive filters in the near-infrared J-band with the FourStar instrument on the Magellan 6.5m Baade telescope, however, have enabled us to detect a near-infrared counterpart. We have defined a photometric system for use with the FourStar J2 and J3 filters, and this photometry indicates strong methane absorption, which unequivocally identifies it as the source of the WISE flux. Using these imaging observations we were then able to steer this object down the slit of the FIRE spectrograph on a night of 0.6" seeing, and so obtain near-infrared spectroscopy confirming a Y0-Y0.5 spectral type. This is in line with the object's near-infrared-to-WISE J3--W2 colour. Preliminary astrometry using both WISE and FourStar data indicates a distance of 5.0+-0.5pc and a substantial tangential velocity of 73+-8km/s. WISEJ163940.83-684738.6 is the brightest confirmed Y dwarf in the WISE W2 passband and its distance measurement places it amongst the lowest luminosity sources detected to date.Comment: Accepted for publication in The Astrophysical Journal, 20 September 201

    A Cross-Match of 2MASS and SDSS: Newly-Found L and T Dwarfs and an Estimate of the Space Densitfy of T Dwarfs

    Get PDF
    We report new L and T dwarfs found in a cross-match of the SDSS Data Release 1 and 2MASS. Our simultaneous search of the two databases effectively allows us to relax the criteria for object detection in either survey and to explore the combined databases to a greater completeness level. We find two new T dwarfs in addition to the 13 already known in the SDSS DR1 footprint. We also identify 22 new candidate and bona-fide L dwarfs, including a new young L2 dwarf and a peculiar L2 dwarf with unusually blue near-IR colors: potentially the result of mildly sub-solar metallicity. These discoveries underscore the utility of simultaneous database cross-correlation in searching for rare objects. Our cross-match completes the census of T dwarfs within the joint SDSS and 2MASS flux limits to the 97% level. Hence, we are able to accurately infer the space density of T dwarfs. We employ Monte Carlo tools to simulate the observed population of SDSS DR1 T dwarfs with 2MASS counterparts and find that the space density of T0-T8 dwarf systems is 0.0070 (-0.0030; +0.0032) per cubic parsec (95% confidence interval), i.e., about one per 140 cubic parsecs. Compared to predictions for the T dwarf space density that depend on various assumptions for the sub-stellar mass function, this result is most consistent with models that assume a flat sub-stellar mass function dN/dM ~ M^0. No >T8 dwarfs were discovered in the present cross-match, though less than one was expected in the limited area (2099 sq. degrees) of SDSS DR1.Comment: To appear in ApJ, Feb 10, 2008 issue. 37 pages, including 12 figures and 14 table

    Two nearby M dwarf binaries from the Two Micron All Sky Survey

    Get PDF
    We report the discovery of two binary M dwarf systems in the immediate solar neighbourhood using the Two Micron All Sky Survey (2MASS). The first is an M6.5 companion to the nearby G star HD 86728 (Gl 376). The known properties of HD 86728 indicate that the M dwarf (Gl 376B) is old, metal-rich and only 14.9 parsec away. The M dwarf is highly active, with both Hα and X-ray emission. Thus, Gl 376B offers the opportunity to study an old, bright, active M dwarf with known metallicity, age and luminosity. We show that it is probable that Gl 376B is itself an unresolved pair. The other system consists of an M6.5 and an M8 dwarf with 14.5 arcsec separation. We estimate a distance of ∼16 parsec for this very low-mass pair. Stronger activity is observed in the M6.5 dwarf, supporting evidence that chromospheric activity is weakening near the hydrogen-burning limit
    corecore