19 research outputs found

    3D Numerical Modelling of Convective Heat Transfer through Two-sided Vertical Channel Symmetrically Filled with Metal Foams

    Get PDF
    A computational fluid dynamics analysis of forced convective heat transfer has been conducted numerically on the hydrodynamic and heat transfer of airflow through vertical channel. The effects of airflow Reynolds number, metal foam porosity and thermal conductivity on the overall Nusselt number, pressure drop, maximum temperature and temperature distribution were considered. The novelty of the present study is the use of metal foams in a two-sided vertical channel and the quantification of the heat transfer enhancement compared to an empty channel for different foam material. Based on the generated results, it is observed that the heat transfer rate from the heated plate is the same for aluminium foam (porosity of 0.948) and copper foam (porosity of 0.877) against equal velocity range and heat flux conditions. Furthermore, it is noted that increasing the airflow velocity reduces the maximum temperature; however, the decrement is not linear. Results obtained from the proposed model were successfully compared with experimental data found in the literature for rectangular metal foam heat exchangers

    Numerical Analysis of Transmembrane Pressure Changes in UF Systems by Changing the Geometry of the Inner Surface of Hollow Fibers

    Get PDF
    Membrane processes are one of the most important separation methods in water and wastewater treatment processes. Hollow fiber membranes are used in many separation processes due to their high surface area to volume ratio. Since porosity and permeability of porous media depend on its geometric features, a change in the geometry leads to changes in these value and the performance of the system. In this study, a mathematical modeling was made for three fiber geometry categories; including circular, square and elliptical and the geometric features were calculated based on three strategies. In order to investigate the effect of geometry, a double porosity media was considered. Results showed that the ratio of surface area to volume of hollow fiber membranes and the axial permeability in square and elliptic geometries are usually higher than circular fibers and are increased to a maximum value of 27% and 63%, respectively. Also, in a strategy, equivalence of the radius of the inspirational circle of the new geometry with the inner radius of ordinary fibers was less than the circular fiber, which was a desired result and caused a decrease in energy consumption and operation cost of the system

    Development and numerical modeling of bioreactor system for the engineering of large-scale tissue

    No full text
    This present thesis comprise two major parts both experimental and numerical study which have been conducted in four distinct steps as following: (1) Design, construction, and evaluation of control and hydrodynamic of a bioreactor system. (2) Visualization of fluid flow perfusion in the hollow fibre membrane bioreactor (HFMB) using a biomedical noninvasive imaging technique, i.e. positron emission tomography (PET). (3) Development of a mathematical model for analyzing a hybrid hollow fibre membrane bioreactor (hHFMB) and (4) Development of a dynamic and two-porous media model for analyzing the HFMB with the aid of computational fluid dynamics (CFD), specifically for bone tissue engineering application. The experimental part includes the steps 1 and 2. In the step 1, the flow perfusion bioreactor system has been designed and constructed. The experimental evaluations of hydrodynamic, and control were performed. In this system, mean pressure, mean flow rate, frequency and waveform of the pulsatile pressure and flow rate can be modulated and controlled over the time to simulate both physiological and non-physiological conditions. The temperature, dissolved oxygen, and pH can be controlled.This bioreactor system can be applied to a variety of scaffold configurations, geometries, and sizes as the cell/tissue culture chamber is adjustable in length.This system is autoclavable, and compatible with noninvasive medical imaging techniques. Designing of the inlet and outlet manifold of the bioreactor were performed according to data obtained from CFD simulation of the flow distribution to achieve high efficiencies in the uniformity of flow perfusion. In the second step, PET was proposed for the very first time and a small animal PET system was used to obtain new information about steady and pulsatile flow patterns in the HFMB for tissue engineering applications. The non-homogeneous tracer distribution, as found with PET imaging, implies the occurrence of non-efficient regions with respect to mass transfer. In steady inlet flow condition, a non-uniform distribution of radioactive tracer was obtained. In contrast, the pulsatile inlet flow generated more uniform perfusion than that of steady flow. Further, it was found that in the case of pulsatile flow, the accumulation of the tracer within the bioreactor was efficiently less than that of steady inlet flow at the same condition. Therefore, in one hand these findings have the potential to improve bioreactor design and in the other hand can explore a very important rout to employ PET in developing bioreactors for tissue engineering applications. The numerical part includes the step 3 and 4 in which the numerical study has been performed for 3-D bone tissue growth in HFMB as a case study for large-scale tissue culture. In the step 3, the feasibility of utilizing newly proposed hHFMB for the growth of mesenchymal stem cells (MSCs) to form bone tissue was investigated using numerical simulations. To this aim, a mathematical model using a CFD code was developed to optimize the design and operation parameters of hHFMB for the growth of MSCs. The volume averaging method was used to formulate mass balance for the nutrients and the cells in the porous extracapillary space (ECS) of the hHFMB. The cell-scaffold construct in the ECS of the hollow fibres and membrane wall were treated as porous medium. Cell volume fraction dependent porosity, permeability, and diffusivity of mass were used in the model. The simulations allowed the simultaneous prediction of nutrient distribution and nutrient-dependent cell volume fraction. In addition, this model was used to study the effects of the operating and design parameters on the nutrient distribution and cell growth within the bioreactor. The modeling results demonstrated that the fluid dynamics within the ECS and transport properties and uptake rates in hHFMB were sufficient to support MSCs required for clinical-scale bone tissue growth in vitro and enabled to solve nutrition difficulties because of high cell density and scaffold size. In the step 4, the new dynamic and two-porous media model has been used for analyzing the nutrient-dependent MSCs growth in order to form the bone tissue in the HFMB. In the present model, hollow fibre scaffold within the bioreactor was treated as a porous domain. The domain consists of the porous lumen region available for fluid flow and the porous ECS region, filled with collagen gel containing cells, for growing tissue mass. Furthermore, the contributions of several design and process parameters, which enhance the performance of the bioreactor, were studied. In addition, the dynamic evaluation of cell growth, oxygen and glucose distributions were quantitatively analyzed. The obtained information can be used for better designing of the bioreactor, determining of suitable operational conditions and scale up of the bioreactor for engineering of clinical-scale bone tissue.--Résumé abrégé par UMI

    Development and numerical modeling of bioreactor system for the engineering of large-scale tissue

    No full text
    This present thesis comprise two major parts both experimental and numerical study which have been conducted in four distinct steps as following: (1) Design, construction, and evaluation of control and hydrodynamic of a bioreactor system. (2) Visualization of fluid flow perfusion in the hollow fibre membrane bioreactor (HFMB) using a biomedical noninvasive imaging technique, i.e. positron emission tomography (PET). (3) Development of a mathematical model for analyzing a hybrid hollow fibre membrane bioreactor (hHFMB) and (4) Development of a dynamic and two-porous media model for analyzing the HFMB with the aid of computational fluid dynamics (CFD), specifically for bone tissue engineering application. The experimental part includes the steps 1 and 2. In the step 1, the flow perfusion bioreactor system has been designed and constructed. The experimental evaluations of hydrodynamic, and control were performed. In this system, mean pressure, mean flow rate, frequency and waveform of the pulsatile pressure and flow rate can be modulated and controlled over the time to simulate both physiological and non-physiological conditions. The temperature, dissolved oxygen, and pH can be controlled.This bioreactor system can be applied to a variety of scaffold configurations, geometries, and sizes as the cell/tissue culture chamber is adjustable in length.This system is autoclavable, and compatible with noninvasive medical imaging techniques. Designing of the inlet and outlet manifold of the bioreactor were performed according to data obtained from CFD simulation of the flow distribution to achieve high efficiencies in the uniformity of flow perfusion. In the second step, PET was proposed for the very first time and a small animal PET system was used to obtain new information about steady and pulsatile flow patterns in the HFMB for tissue engineering applications. The non-homogeneous tracer distribution, as found with PET imaging, implies the occurrence of non-efficient regions with respect to mass transfer. In steady inlet flow condition, a non-uniform distribution of radioactive tracer was obtained. In contrast, the pulsatile inlet flow generated more uniform perfusion than that of steady flow. Further, it was found that in the case of pulsatile flow, the accumulation of the tracer within the bioreactor was efficiently less than that of steady inlet flow at the same condition. Therefore, in one hand these findings have the potential to improve bioreactor design and in the other hand can explore a very important rout to employ PET in developing bioreactors for tissue engineering applications. The numerical part includes the step 3 and 4 in which the numerical study has been performed for 3-D bone tissue growth in HFMB as a case study for large-scale tissue culture. In the step 3, the feasibility of utilizing newly proposed hHFMB for the growth of mesenchymal stem cells (MSCs) to form bone tissue was investigated using numerical simulations. To this aim, a mathematical model using a CFD code was developed to optimize the design and operation parameters of hHFMB for the growth of MSCs. The volume averaging method was used to formulate mass balance for the nutrients and the cells in the porous extracapillary space (ECS) of the hHFMB. The cell-scaffold construct in the ECS of the hollow fibres and membrane wall were treated as porous medium. Cell volume fraction dependent porosity, permeability, and diffusivity of mass were used in the model. The simulations allowed the simultaneous prediction of nutrient distribution and nutrient-dependent cell volume fraction. In addition, this model was used to study the effects of the operating and design parameters on the nutrient distribution and cell growth within the bioreactor. The modeling results demonstrated that the fluid dynamics within the ECS and transport properties and uptake rates in hHFMB were sufficient to support MSCs required for clinical-scale bone tissue growth in vitro and enabled to solve nutrition difficulties because of high cell density and scaffold size. In the step 4, the new dynamic and two-porous media model has been used for analyzing the nutrient-dependent MSCs growth in order to form the bone tissue in the HFMB. In the present model, hollow fibre scaffold within the bioreactor was treated as a porous domain. The domain consists of the porous lumen region available for fluid flow and the porous ECS region, filled with collagen gel containing cells, for growing tissue mass. Furthermore, the contributions of several design and process parameters, which enhance the performance of the bioreactor, were studied. In addition, the dynamic evaluation of cell growth, oxygen and glucose distributions were quantitatively analyzed. The obtained information can be used for better designing of the bioreactor, determining of suitable operational conditions and scale up of the bioreactor for engineering of clinical-scale bone tissue.--Résumé abrégé par UMI

    Evaluation of Mechanical Properties and Medical Applications of Polycaprolactone Small Diameter Artificial Blood Vessels

    No full text
    Increasing the cardiovascular diseases and decreasing the possibility of autograft surgery are important factors that cause the choice of artificial vascular graft as an alternative treatment method. In this regard, producing artificial grafts similar to natural vessels is an important purpose that has long been followed as a gold standard by many researchers worldwide. In addition, mechanical properties including strength, long patency, bio-compatibility and hydrophobicity are necessary properties to achieve ideal vascular grafts. Hence there are various factors such as polymer type and preparation methods, which contribute to suitable mechanical properties. The electrospinning as an optimized method on one side and biocompatible, degradable and semicrystalline polycaprolactone (PCL) on the other side are used for their acceptable mechanical properties to manufacture synthetic vessels. In this study, PCL vascular grafts have been reviewed and a wide range of parameters affecting the improvement of mechanical properties and their performance have been described along with clinical applications. Therefore, by investigating and comparing single and composite PCL vascular grafts, we achieved acceptable results in the field of cell growth and adhesion as well as implanting grafts in animals such as rat and rabbit. By reviewing other studies, it was revealed that synthetic composite vessels made of PCL and natural polymers such as collagen and chitosan and synthetic polymers such as polyurethane (PU) for long patency and acceptable cell adhesion have shown good clinical results

    Effect of Laminar Pulsatile Fluid Flow on Separation of Volatile Organic Compounds from Aqueous Solution by a Hollow Fiber Membrane-Based Process

    No full text
    In this study, a laminar pulsatile fluid flow was used for the separation of benzene, toluene, ethylbenzene, and xylene isomers (BTEX) from aqueous solutions. Polyether sulfone hollow fiber membrane has been applied to this process. The effects of BTEX concentration, and feedand extraction flow rates were examined. It was found that the application of the pulsatile fluid flow with the frequency of 0.5 Hz improved the separation process significantly, and the removal efficiency increased more than twice. Moreover, the results showed that BTEX separation under pulsatile fluid flow was affected by the feed flow rate, extraction flow rate, and the BTEX concentration, as well. Validerad;2022;NivÄ 2;2022-11-29 (sofila);Funder: University of Sistan and Baluchestan (grant no. G1394/3); PolishNational Agency for Academic Exchange (grant no. PPN/ULM/2020/1/00014/DEC/1)</p

    Engineering of oriented carbon nanotubes in composite materials

    No full text
    The orientation and arrangement engineering of carbon nanotubes (CNTs) in composite structures is considered a challenging issue. In this regard, two groups of in situ and ex situ techniques have been developed. In the first, the arrangement is achieved during CNT growth, while in the latter, the CNTs are initially grown in random orientation and the arrangement is then achieved during the device integration process. As the ex situ techniques are free from growth restrictions and more flexible in terms of controlling the alignment and sorting of the CNTs, they are considered by some as the preferred technique for engineering of oriented CNTs. This review focuses on recent progress in the improvement of the orientation and alignment of CNTs in composite materials. Moreover, the advantages and disadvantages of the processes are discussed as well as their future outlook

    Controllability of the hydrophilic or hydrophobic behavior of the modified polysulfone electrospun nanofiber mats

    No full text
    In this study controllability of morphology and wettability behavior of the polysulfone electrospun nanofiber mats (ENMs) by adding the surfactants was investigated. The effect of cationic, anionic, and non-ionic surfactants on diameter size, hydrophilicity or hydrophobicity, surface roughness, and chemical composition of the ENMs was studied using FESEM, contact angle measurement, AFM, and FTIR, respectively. Comparing the surfactant-assisted to surfactant-free nanofibers, the contact angle was decreased (from 115° to 66°) for the SDS. In contrast, it was increased (from 115° to 129°) for the CTAB. A similar trend was observed for the ENMs surface roughness. However, both surfactants caused to decline in the nanofibers' diameter. These observations indicated that by changing the surfactant type, the nanofiber mats surface roughness could be improved whereby the wettability of the fibers would be controlled. These phenomena are thought to be due to change in the solvent evaporation rate during the electrospinning process
    corecore