5,442 research outputs found
Continued fractions for some transcendental numbers
We consider series of the form , where and the integer sequence satisfies a certain non-autonomous recurrence of second order, which entails that for n?1. It is shown that the terms of the sequence, and multiples of the ratios of successive terms, appear interlaced in the continued fraction expansion of the sum of the series, which is a transcendental number
Use of molecular genetics and historical records to reconstruct the history of local communities
Recent advances in molecular genetics made the inference of past demographic events through the analysis of gene pools from modern populations possible. The technology uses genetic markers toprovide previously unavailable resolution into questions of human evolution, migration and the historical relationship of separated human populations. Some of the genetic markers used to measurevariation (polymorphism) within populations are found in the Y-chromosome and mitochondrial DNA. Variations in these two types of DNA can be grouped into continent-specific haplogroups or lineages.Geographic origin can be assigned to each lineage, and consequently trace back migration pattern of human populations. Y-chromosome and mitochondrial DNA are used to construct paternal and maternal lineages respectively. The use of these molecular techniques together with historical records in an integrated manner can greatly benefit the study of the social history of admixed communities, such as the Cape Muslim community living in the Western Cape of South Africa
Prevention is better than cure, but...: Preventive medication as a risk to ordinariness?
Preventive health remains at the forefront of public health concerns; recent initiatives, such as the NHS health check, may lead to recommendations for medication in response to the identification of 'at risk' individuals. Little is known about lay views of preventive medication. This paper uses the case of aspirin as a prophylactic against heart disease to explore views among people invited to screening for a trial investigating the efficacy of such an approach. Qualitative interviews (N=46) and focus groups (N=5, participants 31) revealed dilemmas about preventive medication in the form of clashes between norms: first, in general terms, assumptions about the benefit of prevention were complicated by dislike of medication; second, the individual duty to engage in prevention was complicated by the need not to be over involved with one's own health; third, the potential appeal of this alternative approach to health promotion was complicated by unease about the implications of encouraging irresponsible behaviour among others. Though respondents made different decisions about using the drug, they reported very similar ways of trying to resolve these conflicts, drawing upon concepts of necessity and legitimisation and the special ordinariness of the particular dru
Probability Models for Degree Distributions of Protein Interaction Networks
The degree distribution of many biological and technological networks has
been described as a power-law distribution. While the degree distribution does
not capture all aspects of a network, it has often been suggested that its
functional form contains important clues as to underlying evolutionary
processes that have shaped the network. Generally, the functional form for the
degree distribution has been determined in an ad-hoc fashion, with clear
power-law like behaviour often only extending over a limited range of
connectivities. Here we apply formal model selection techniques to decide which
probability distribution best describes the degree distributions of protein
interaction networks. Contrary to previous studies this well defined approach
suggests that the degree distribution of many molecular networks is often
better described by distributions other than the popular power-law
distribution. This, in turn, suggests that simple, if elegant, models may not
necessarily help in the quantitative understanding of complex biological
processes.
Towards More Accurate Molecular Dynamics Calculation of Thermal Conductivity. Case Study: GaN Bulk Crystals
Significant differences exist among literature for thermal conductivity of
various systems computed using molecular dynamics simulation. In some cases,
unphysical results, for example, negative thermal conductivity, have been
found. Using GaN as an example case and the direct non-equilibrium method,
extensive molecular dynamics simulations and Monte Carlo analysis of the
results have been carried out to quantify the uncertainty level of the
molecular dynamics methods and to identify the conditions that can yield
sufficiently accurate calculations of thermal conductivity. We found that the
errors of the calculations are mainly due to the statistical thermal
fluctuations. Extrapolating results to the limit of an infinite-size system
tend to magnify the errors and occasionally lead to unphysical results. The
error in bulk estimates can be reduced by performing longer time averages using
properly selected systems over a range of sample lengths. If the errors in the
conductivity estimates associated with each of the sample lengths are kept
below a certain threshold, the likelihood of obtaining unphysical bulk values
becomes insignificant. Using a Monte-Carlo approach developed here, we have
determined the probability distributions for the bulk thermal conductivities
obtained using the direct method. We also have observed a nonlinear effect that
can become a source of significant errors. For the extremely accurate results
presented here, we predict a [0001] GaN thermal conductivity of 185 at 300 K, 102 at 500 K, and 74
at 800 K. Using the insights obtained in the work, we have achieved a
corresponding error level (standard deviation) for the bulk (infinite sample
length) GaN thermal conductivity of less than 10 , 5 , and 15 at 300 K, 500 K, and 800 K respectively
Statistical Mechanics of Two-dimensional Foams
The methods of statistical mechanics are applied to two-dimensional foams
under macroscopic agitation. A new variable -- the total cell curvature -- is
introduced, which plays the role of energy in conventional statistical
thermodynamics. The probability distribution of the number of sides for a cell
of given area is derived. This expression allows to correlate the distribution
of sides ("topological disorder") to the distribution of sizes ("geometrical
disorder") in a foam. The model predictions agree well with available
experimental data
Dynamic Energy Management
We present a unified method, based on convex optimization, for managing the
power produced and consumed by a network of devices over time. We start with
the simple setting of optimizing power flows in a static network, and then
proceed to the case of optimizing dynamic power flows, i.e., power flows that
change with time over a horizon. We leverage this to develop a real-time
control strategy, model predictive control, which at each time step solves a
dynamic power flow optimization problem, using forecasts of future quantities
such as demands, capacities, or prices, to choose the current power flow
values. Finally, we consider a useful extension of model predictive control
that explicitly accounts for uncertainty in the forecasts. We mirror our
framework with an object-oriented software implementation, an open-source
Python library for planning and controlling power flows at any scale. We
demonstrate our method with various examples. Appendices give more detail about
the package, and describe some basic but very effective methods for
constructing forecasts from historical data.Comment: 63 pages, 15 figures, accompanying open source librar
Magnetic effects in a holographic Fermi-like liquid
We explore the magnetic properties of the Fermi-like liquid represented by
the D3-D7' system. The system exhibits interesting magnetic properties such as
ferromagnetism and an anomalous Hall effect, which are due to the Chern-Simons
term in the effective gravitational action. We investigate the spectrum of
quasi-normal modes in the presence of a magnetic field and show that the
magnetic field mitigates the instability towards a striped phase. In addition,
we find a critical magnetic field above which the zero sound mode becomes
massive.Comment: 18 pages, 15 figure
- …