1,418 research outputs found
Molecular ratchets - verification of the principle of detailed balance
We argue that the recent experiments of Kelly et. al.(Angew. Chem. Int. Ed.
Engl. 36, 1866 (1997)) on molecular ratchets, in addition to being in agreement
with the second law of thermodynamics, is a test of the principle of detailed
balance for the ratchet. We suggest new experiments, using an asymmetric
ratchet, to further test the principle. We also point out methods involving a
time variation of the temperature to to give it a directional motion
Adhesion-induced phase separation of multiple species of membrane junctions
A theory is presented for the membrane junction separation induced by the
adhesion between two biomimetic membranes that contain two different types of
anchored junctions (receptor/ligand complexes). The analysis shows that several
mechanisms contribute to the membrane junction separation. These mechanisms
include (i) the height difference between type-1 and type-2 junctions is the
main factor which drives the junction separation, (ii) when type-1 and type-2
junctions have different rigidities against stretch and compression, the
``softer'' junctions are the ``favored'' species, and the aggregation of the
softer junction can occur, (iii) the elasticity of the membranes mediates a
non-local interaction between the junctions, (iv) the thermally activated shape
fluctuations of the membranes also contribute to the junction separation by
inducing another non-local interaction between the junctions and renormalizing
the binding energy of the junctions. The combined effect of these mechanisms is
that when junction separation occurs, the system separates into two domains
with different relative and total junction densities.Comment: 23 pages, 6 figure
Southward expansion: The myth of the West in the promotion of Florida, 1876â1900
This article examines the ways in which promoters and developers of Florida, in the decades after Reconstruction, engaged with a popular myth of the West as a means of recasting and selling their state to prospective settlers in the North and Midwest. The myth envisaged a cherished region to the west where worthy Americans could migrate and achieve social and economic independence away from the crowded confines of the East, or Europe. According to state immigration agents, land-promoters and other booster writers, Florida, although a Southern ex-Confederate state, offered precisely these 'western' opportunities for those hard-working Northerners seeking land and an opening for agrarian prosperity. However, the myth, which posited that, in the west, an individual's labour and thrift were rewarded with social and economic improvement, meshed awkwardly with the contemporary emergence of Florida as a popular winter destination for wealthy tourists and invalids seeking leisure and healthfulness away from the North. Yet it also reflected and reinforced promotional notions of racial improvement which would occur with an influx of enterprising Anglo-Americans, who would effectively displace the state's large African American population. In Florida, the myth of the West supported the linked post-Reconstruction processes of state development and racial subjugation
Recommended from our members
Engineering Analysis of Intermediate Loop and Process Heat Exchanger Requirements to Include Configuration Analysis and Materials Needs
The need to locate advanced hydrogen production facilities a finite distance away from a nuclear power source necessitates the need for an intermediate heat transport loop (IHTL). This IHTL must not only efficiently transport energy over distances up to 500 meters but must also be capable of operating at high temperatures (>850oC) for many years. High temperature, long term operation raises concerns of material strength, creep resistance and general material stability (corrosion resistance). IHTL design is currently in the initial stages. Many questions remain to be answered before intelligent design can begin. The report begins to look at some of the issues surrounding the main components of an IHTL. Specifically, a stress analysis of a compact heat exchanger design under expected operating conditions is reported. Also the results of a thermal analysis performed on two ITHL pipe configurations for different heat transport fluids are presented. The configurations consist of separate hot supply and cold return legs as well as annular design in which the hot fluid is carried in an inner pipe and the cold return fluids travels in the opposite direction in the annular space around the hot pipe. The effects of insulation configurations on pipe configuration performance are also reported. Finally, a simple analysis of two different process heat exchanger designs, one a tube in shell type and the other a compact or microchannel reactor are evaluated in light of catalyst requirements. Important insights into the critical areas of research and development are gained from these analyses, guiding the direction of future areas of research
Simplest random K-satisfiability problem
We study a simple and exactly solvable model for the generation of random
satisfiability problems. These consist of random boolean constraints
which are to be satisfied simultaneously by logical variables. In
statistical-mechanics language, the considered model can be seen as a diluted
p-spin model at zero temperature. While such problems become extraordinarily
hard to solve by local search methods in a large region of the parameter space,
still at least one solution may be superimposed by construction. The
statistical properties of the model can be studied exactly by the replica
method and each single instance can be analyzed in polynomial time by a simple
global solution method. The geometrical/topological structures responsible for
dynamic and static phase transitions as well as for the onset of computational
complexity in local search method are thoroughly analyzed. Numerical analysis
on very large samples allows for a precise characterization of the critical
scaling behaviour.Comment: 14 pages, 5 figures, to appear in Phys. Rev. E (Feb 2001). v2: minor
errors and references correcte
Instability of a Bose-Einstein Condensate with Attractive Interaction
We study the stability of a Bose-Einstein condensate of harmonically trapped
atoms with negative scattering length, specifically lithium 7. Our method is to
solve the time-dependent nonlinear Schrodinger equation numerically. For an
isolated condensate, with no gain or loss, we find that the system is stable
(apart from quantum tunneling) if the particle number N is less than a critical
number N_c. For N > N_c, the system collapses to high-density clumps in a
region near the center of the trap. The time for the onset of collapse is on
the order of 1 trap period. Within numerical uncertainty, the results are
consistent with the formation of a "black hole" of infinite density
fluctuations, as predicted by Ueda and Huang. We obtain numerically N_c
approximately 1251. We then include gain-loss mechanisms, i.e., the gain of
atoms from a surrounding "thermal cloud", and the loss due to two- and
three-body collisions. The number N now oscillates in a steady state, with a
period of about 145 trap periods. We obtain N_c approximately 1260 as the
maximum value in the oscillations.Comment: Email correspondence to [email protected] ; 18 pages and 9 EPS
figures, using REVTeX and BoxedEPS macro
CMB polarization from secondary vector and tensor modes
We consider a novel contribution to the polarization of the Cosmic Microwave
Background induced by vector and tensor modes generated by the non-linear
evolution of primordial scalar perturbations. Our calculation is based on
relativistic second-order perturbation theory and allows to estimate the
effects of these secondary modes on the polarization angular power-spectra. We
show that a non-vanishing B-mode polarization unavoidably arises from pure
scalar initial perturbations, thus limiting our ability to detect the signature
of primordial gravitational waves generated during inflation. This secondary
effect dominates over that of primordial tensors for an inflationary
tensor-to-scalar ratio . The magnitude of the effect is smaller than
the contamination produced by the conversion of polarization of type E into
type B, by weak gravitational lensing. However the lensing signal can be
cleaned, making the secondary modes discussed here the actual background
limiting the detection of small amplitude primordial gravitational waves.Comment: 14 pages, 3 figures, minor changes matching the version to be
published in Phys. Rev.
Spectral method for the time-dependent Gross-Pitaevskii equation with a harmonic trap
We study the numerical resolution of the time-dependent Gross-Pitaevskii
equation, a non-linear Schroedinger equation used to simulate the dynamics of
Bose-Einstein condensates. Considering condensates trapped in harmonic
potentials, we present an efficient algorithm by making use of a spectral
Galerkin method, using a basis set of harmonic oscillator functions, and the
Gauss-Hermite quadrature. We apply this algorithm to the simulation of
condensate breathing and scissors modes.Comment: 23 pages, 5 figure
Concept of temperature in multi-horizon spacetimes: Analysis of Schwarzschild-De Sitter metric
In case of spacetimes with single horizon, there exist several
well-established procedures for relating the surface gravity of the horizon to
a thermodynamic temperature. Such procedures, however, cannot be extended in a
straightforward manner when a spacetime has multiple horizons. In particular,
it is not clear whether there exists a notion of global temperature
characterizing the multi-horizon spacetimes. We examine the conditions under
which a global temperature can exist for a spacetime with two horizons using
the example of Schwarzschild-De Sitter (SDS) spacetime. We systematically
extend different procedures (like the expectation value of stress tensor,
response of particle detectors, periodicity in the Euclidean time etc.) for
identifying a temperature in the case of spacetimes with single horizon to the
SDS spacetime. This analysis is facilitated by using a global coordinate chart
which covers the entire SDS manifold. We find that all the procedures lead to a
consistent picture characterized by the following features: (a) In general, SDS
spacetime behaves like a non-equilibrium system characterized by two
temperatures. (b) It is not possible to associate a global temperature with SDS
spacetime except when the ratio of the two surface gravities is rational (c)
Even when the ratio of the two surface gravities is rational, the thermal
nature depends on the coordinate chart used. There exists a global coordinate
chart in which there is global equilibrium temperature while there exist other
charts in which SDS behaves as though it has two different temperatures. The
coordinate dependence of the thermal nature is reminiscent of the flat
spacetime in Minkowski and Rindler coordinate charts. The implications are
discussed.Comment: 12 page
Large-scale magnetic fields from inflation in dilaton electromagnetism
The generation of large-scale magnetic fields is studied in dilaton
electromagnetism in inflationary cosmology, taking into account the dilaton's
evolution throughout inflation and reheating until it is stabilized with
possible entropy production. It is shown that large-scale magnetic fields with
observationally interesting strength at the present time could be generated if
the conformal invariance of the Maxwell theory is broken through the coupling
between the dilaton and electromagnetic fields in such a way that the resultant
quantum fluctuations in the magnetic field has a nearly scale-invariant
spectrum. If this condition is met, the amplitude of the generated magnetic
field could be sufficiently large even in the case huge amount of entropy is
produced with the dilution factor as the dilaton decays.Comment: 28 pages, 5 figures, the version accepted for publication in Phys.
Rev. D; some references are adde
- âŠ