3,154 research outputs found
Macroprudential policy, bank competition and bank risk in East Asia
Also available at SSRN: https://ssrn.com/abstract=3950285 or https://doi.org/10.2139/ssrn.3950285Studies of the effect of macroprudential policy on bank risk tend to disregard the potential complementary role of bank competition, which could influence policyâs effectiveness in achieving its financial stability objectives. Accordingly, we assess the relation of macroprudential policy and competition to bank risk jointly from a sample of 1373 banks from 13 East Asian countries, using the latest IMF dataset of macroprudential policy from 1990 to 2018. Among our results, we have found that whereas macroprudential policies did commonly have a beneficial effect on risk at a bank level controlling for competition, there are a number of cases where policies were deleterious through increased risk. Notably in the developing and emerging East Asian countries and in the short term, the interactions between competition and macroprudential measures often show a lesser response in terms of risk reduction for banks with more market power, a form of âcompetition-stabilityâ. We suggest that this links in turn to ability of such banks to undertake risk-shifting in response to macroprudential policy. On the other hand, we find for banks in advanced East Asian countries some tendency in the long term for banks facing intense competition to take relatively more risks in face of macroprudential measures, i.e. âcompetition fragilityâ. These findings provide important implications for regulators.https://www.niesr.ac.uk/wp-content/uploads/2021/12/DP-533.pd
Dynamical tunneling in molecules: Quantum routes to energy flow
Dynamical tunneling, introduced in the molecular context, is more than two
decades old and refers to phenomena that are classically forbidden but allowed
by quantum mechanics. On the other hand the phenomenon of intramolecular
vibrational energy redistribution (IVR) has occupied a central place in the
field of chemical physics for a much longer period of time. Although the two
phenomena seem to be unrelated several studies indicate that dynamical
tunneling, in terms of its mechanism and timescales, can have important
implications for IVR. Examples include the observation of local mode doublets,
clustering of rotational energy levels, and extremely narrow vibrational
features in high resolution molecular spectra. Both the phenomena are strongly
influenced by the nature of the underlying classical phase space. This work
reviews the current state of understanding of dynamical tunneling from the
phase space perspective and the consequences for intramolecular vibrational
energy flow in polyatomic molecules.Comment: 37 pages and 23 figures (low resolution); Int. Rev. Phys. Chem.
(Review to appear in Oct. 2007
Initial conditions, Discreteness and non-linear structure formation in cosmology
In this lecture we address three different but related aspects of the initial
continuous fluctuation field in standard cosmological models. Firstly we
discuss the properties of the so-called Harrison-Zeldovich like spectra. This
power spectrum is a fundamental feature of all current standard cosmological
models. In a simple classification of all stationary stochastic processes into
three categories, we highlight with the name ``super-homogeneous'' the
properties of the class to which models like this, with , belong. In
statistical physics language they are well described as glass-like. Secondly,
the initial continuous density field with such small amplitude correlated
Gaussian fluctuations must be discretised in order to set up the initial
particle distribution used in gravitational N-body simulations. We discuss the
main issues related to the effects of discretisation, particularly concerning
the effect of particle induced fluctuations on the statistical properties of
the initial conditions and on the dynamical evolution of gravitational
clustering.Comment: 28 pages, 1 figure, to appear in Proceedings of 9th Course on
Astrofundamental Physics, International School D. Chalonge, Kluwer, eds N.G.
Sanchez and Y.M. Pariiski, uses crckapb.st pages, 3 figure, ro appear in
Proceedings of 9th Course on Astrofundamental Physics, International School
D. Chalonge, Kluwer, Eds. N.G. Sanchez and Y.M. Pariiski, uses crckapb.st
Low Resistance Polycrystalline Diamond Thin Films Deposited by Hot Filament Chemical Vapour Deposition
Polycrystalline diamond thin films with outgrowing diamond (OGD) grains were deposited onto silicon wafers using a hydrocarbon gas (CH4) highly diluted with H2 at low pressure in a hot filament chemical vapour deposition (HFCVD) reactor with a range of gas flow rates. X-ray diffraction (XRD) and SEM showed polycrystalline diamond structure with a random orientation. Polycrystalline diamond films with various textures were grown and (111) facets were dominant with sharp grain boundaries. Outgrowth was observed in flowerish character at high gas flow rates. Isolated single crystals with little openings appeared at various stages at low gas flow rates. Thus, changing gas flow rates had a beneficial influence on the grain size, growth rate and electrical resistivity. CVD diamond films gave an excellent performance for medium film thickness with relatively low electrical resistivity and making them potentially useful in many industrial applications
Regulation of the JNK3 signaling pathway during islet isolation: JNK3 and c-fos as new markers of islet quality for transplantation.
Stress conditions generated throughout pancreatic islet processing initiate the activation of pro-inflammatory pathways and beta-cell destruction. Our goal is to identify relevant and preferably beta-specific markers to assess the activation of beta-cell stress and apoptotic mechanisms, and therefore the general quality of the islet preparation prior to transplantation. Protein expression and activation were analyzed by Western blotting and kinase assays. ATP measurements were performed by a luminescence-based assay. Oxygen consumption rate (OCR) was measured based on standard protocols using fiber optic sensors. Total RNA was used for gene expression analyzes. Our results indicate that pancreas digestion initiates a potent stress response in the islets by activating two stress kinases, c-Jun N-terminal Kinase (JNK) and p38. JNK1 protein levels remained unchanged between different islet preparations and following culture. In contrast, levels of JNK3 increased after islet culture, but varied markedly, with a subset of preparations bearing low JNK3 expression. The observed changes in JNK3 protein content strongly correlated with OCR measurements as determined by the Spearman's rank correlation coefficient rho [Formula: see text] in the matching islet samples, while inversely correlating with c-fos mRNA expression [Formula: see text]. In conclusion, pancreas digestion recruits JNK and p38 kinases that are known to participate to beta-cell apoptosis. Concomitantly, the islet isolation alters JNK3 and c-fos expression, both strongly correlating with OCR. Thus, a comparative analysis of JNK3 and c-fos expression before and after culture may provide for novel markers to assess islet quality prior to transplantation. JNK3 has the advantage over all other proposed markers to be islet-specific, and thus to provide for a marker independent of non-beta cell contamination
Using interpretative phenomenological analysis to inform physiotherapy practice: An introduction with reference to the lived experience of cerebellar ataxia
The attached file is a pre-published version of the full and final paper which can be found at the link below.This article has been made available through the Brunel Open Access Publishing Fund.Qualitative research methods that focus on the lived experience of people with health conditions are relatively
underutilised in physiotherapy research. This article aims to introduce interpretative phenomenological analysis
(IPA), a research methodology oriented toward exploring and understanding the experience of a particular
phenomenon (e.g., living with spinal cord injury or chronic pain, or being the carer of someone with a particular
health condition). Researchers using IPA try to find out how people make sense of their experiences and the
meanings they attach to them. The findings from IPA research are highly nuanced and offer a fine grained
understanding that can be used to contextualise existing quantitative research, to inform understanding of novel
or underresearched topics or, in their own right, to provoke a reappraisal of what is considered known about
a specified phenomenon. We advocate IPA as a useful and accessible approach to qualitative research that
can be used in the clinical setting to inform physiotherapy practice and the development of services from the
perspective of individuals with particular health conditions.This article is available through the Brunel Open Access Publishing Fund
Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2
High-transition-temperature (high-Tc) superconductivity is ubiquitous in the
cuprates containing CuO2 planes but each cuprate has its own character. The
study of the material dependence of the d-wave superconducting gap (SG) should
provide important insights into the mechanism of high-Tc. However, because of
the 'pseudogap' phenomenon, it is often unclear whether the energy gaps
observed by spectroscopic techniques really represent the SG. Here, we report
spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of
nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They
enable us to observe the quasi-particle interference (QPI) effect in this
material, through which unambiguous new information on the SG is obtained. The
analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is
almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level,
while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG
in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This
explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig
Novel soft bending actuator based power augmentation hand exoskeleton controlled by human intention
This article presents the development of a soft material power augmentation wearable robot using novel bending soft artificial muscles. This soft exoskeleton was developed as a human hand power augmentation system for healthy or partially hand disabled individuals. The proposed prototype serves healthy manual workers by decreasing the muscular effort needed for grasping objects. Furthermore, it is a power augmentation wearable robot for partially hand disabled or post-stroke patients, supporting and augmenting the fingersâ grasping force with minimum muscular effort in most everyday activities. This wearable robot can fit any adult hand size without the need for any mechanical system changes or calibration. Novel bending soft actuators are developed to actuate this power augmentation device. The performance of these actuators has been experimentally assessed. A geometrical kinematic analysis and mathematical output force model have been developed for the novel actuators. The performance of this mathematical model has been proven experimentally with promising results. The control system of this exoskeleton is created by hybridization between cascaded position and force closed loop intelligent controllers. The cascaded position controller is designed for the bending actuators to follow the fingers in their bending movements. The force controller is developed to control the grasping force augmentation. The operation of the control system with the exoskeleton has been experimentally validated. EMG signals were monitored during the experiments to determine that the proposed exoskeleton system decreased the muscular efforts of the wearer
- âŠ