1,174 research outputs found

    Larval development of laboratory-reared carpenter, Argyrozona argyrozona (Pisces: Sparidae)

    Get PDF
    The larval development of the sparid Argyrozona argyrozona is described and illustrated from 16 individuals, representative of a batch reared in the laboratory from artificially spawned eggs. A general account of development is given as well as detailed descriptions of pigmentation, fin development, head spination, myomere counts and morphometries. The general developmental pattern is similar to other sparids but is unique in regard to preopercular spination, premaxillary and medio-lateral pigmentation and morphometries

    Other‐Sacrificing Options

    Get PDF
    I argue that you can be permitted to discount the interests of your adversaries even though doing so would be impartially suboptimal. This means that, in addition to the kinds of moral options that the literature traditionally recognises, there exist what I call other-sacrificing options. I explore the idea that you cannot discount the interests of your adversaries as much as you can favour the interests of your intimates; if this is correct, then there is an asymmetry between negative partiality toward your adversaries and positive partiality toward your intimates

    A two-step learning approach for solving full and almost full cold start problems in dyadic prediction

    Full text link
    Dyadic prediction methods operate on pairs of objects (dyads), aiming to infer labels for out-of-sample dyads. We consider the full and almost full cold start problem in dyadic prediction, a setting that occurs when both objects in an out-of-sample dyad have not been observed during training, or if one of them has been observed, but very few times. A popular approach for addressing this problem is to train a model that makes predictions based on a pairwise feature representation of the dyads, or, in case of kernel methods, based on a tensor product pairwise kernel. As an alternative to such a kernel approach, we introduce a novel two-step learning algorithm that borrows ideas from the fields of pairwise learning and spectral filtering. We show theoretically that the two-step method is very closely related to the tensor product kernel approach, and experimentally that it yields a slightly better predictive performance. Moreover, unlike existing tensor product kernel methods, the two-step method allows closed-form solutions for training and parameter selection via cross-validation estimates both in the full and almost full cold start settings, making the approach much more efficient and straightforward to implement

    The VLBA Imaging and Polarimetry Survey at 5 GHz

    Get PDF
    We present the first results of the VLBA Imaging and Polarimetry Survey (VIPS), a 5 GHz VLBI survey of 1,127 sources with flat radio spectra. Through automated data reduction and imaging routines, we have produced publicly available I, Q, and U images and have detected polarized flux density from 37% of the sources. We have also developed an algorithm to use each source's I image to automatically classify it as a point-like source, a core-jet, a compact symmetric object (CSO) candidate, or a complex source. The mean ratio of the polarized to total 5 GHz flux density for VIPS sources with detected polarized flux density ranges from 1% to 20% with a median value of about 5%. We have also found significant evidence that the directions of the jets in core-jet systems tend to be perpendicular to the electric vector position angles (EVPAs). The data is consistent with a scenario in which ~24% of the polarized core-jets have EVPAs that are anti-aligned with the directions of their jet components and which have a substantial amount of Faraday rotation. In addition to these initial results, plans for future follow-up observations are discussed.Comment: 36 pages, 3 tables, 13 figures; accepted for publication in Ap

    Continuous loading of a magnetic trap

    Get PDF
    We have realized a scheme for continuous loading of a magnetic trap (MT). ^{52}Cr atoms are continuously captured and cooled in a magneto-optical trap (MOT). Optical pumping to a metastable state decouples atoms from the cooling light. Due to their high magnetic moment (6 Bohr magnetons), low-field seeking metastable atoms are trapped in the magnetic quadrupole field provided by the MOT. Limited by inelastic collisions between atoms in the MOT and in the MT, we load 10^8 metastable atoms at a rate of 10^8 atoms/s below 100 microkelvin into the MT. After loading we can perform optical repumping to realize a MT of ground state chromium atoms.Comment: 4 pages, 4 figures, version 2, modified references, included additional detailed information, minor changes in figure 3 and in tex

    Gravitational-wave astronomy: the high-frequency window

    Full text link
    This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated ``bread-and-butter'' source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from these sources is truly inspiring, there is strong motivation for the development of future generations of ground based detectors sensitive in the range from hundreds of Hz to several kHz.Comment: 21 pages, 5 figures, Lectures presented at the 2nd Aegean Summer School on the Early Universe, Syros, Greece, September 200

    The Physics of turbulent and dynamically unstable Herbig-Haro jets

    Full text link
    The overall properties of the Herbig-Haro objects such as centerline velocity, transversal profile of velocity, flow of mass and energy are explained adopting two models for the turbulent jet. The complex shapes of the Herbig-Haro objects, such as the arc in HH34 can be explained introducing the combination of different kinematic effects such as velocity behavior along the main direction of the jet and the velocity of the star in the interstellar medium. The behavior of the intensity or brightness of the line of emission is explored in three different cases : transversal 1D cut, longitudinal 1D cut and 2D map. An analytical explanation for the enhancement in intensity or brightness such as usually modeled by the bow shock is given by a careful analysis of the geometrical properties of the torus.Comment: 17 pages, 10 figures. Accepted for publication in Astrophysics & Spac

    Origin and Evolution of Saturn's Ring System

    Full text link
    The origin and long-term evolution of Saturn's rings is still an unsolved problem in modern planetary science. In this chapter we review the current state of our knowledge on this long-standing question for the main rings (A, Cassini Division, B, C), the F Ring, and the diffuse rings (E and G). During the Voyager era, models of evolutionary processes affecting the rings on long time scales (erosion, viscous spreading, accretion, ballistic transport, etc.) had suggested that Saturn's rings are not older than 100 My. In addition, Saturn's large system of diffuse rings has been thought to be the result of material loss from one or more of Saturn's satellites. In the Cassini era, high spatial and spectral resolution data have allowed progress to be made on some of these questions. Discoveries such as the ''propellers'' in the A ring, the shape of ring-embedded moonlets, the clumps in the F Ring, and Enceladus' plume provide new constraints on evolutionary processes in Saturn's rings. At the same time, advances in numerical simulations over the last 20 years have opened the way to realistic models of the rings's fine scale structure, and progress in our understanding of the formation of the Solar System provides a better-defined historical context in which to understand ring formation. All these elements have important implications for the origin and long-term evolution of Saturn's rings. They strengthen the idea that Saturn's rings are very dynamical and rapidly evolving, while new arguments suggest that the rings could be older than previously believed, provided that they are regularly renewed. Key evolutionary processes, timescales and possible scenarios for the rings's origin are reviewed in the light of tComment: Chapter 17 of the book ''Saturn After Cassini-Huygens'' Saturn from Cassini-Huygens, Dougherty, M.K.; Esposito, L.W.; Krimigis, S.M. (Ed.) (2009) 537-57
    • 

    corecore