1,135 research outputs found

    Testing quantum correlations in a confined atomic cloud by scattering fast atoms

    Full text link
    We suggest measuring one-particle density matrix of a trapped ultracold atomic cloud by scattering fast atoms in a pure momentum state off the cloud. The lowest-order probability of the inelastic process, resulting in a pair of outcoming fast atoms for each incoming one, turns out to be given by a Fourier transform of the density matrix. Accordingly, important information about quantum correlations can be deduced directly from the differential scattering cross-section. A possible design of the atomic detector is also discussed.Comment: 5 RevTex pages, no figures, submitted to PR

    The monopole mass in the three-dimensional Georgi-Glashow model

    Get PDF
    We study the three-dimensional Georgi-Glashow model to demonstrate how magnetic monopoles can be studied fully non-perturbatively in lattice Monte Carlo simulations, without any assumptions about the smoothness of the field configurations. We examine the apparent contradiction between the conjectured analytic connection of the `broken' and `symmetric' phases, and the interpretation of the mass (i.e., the free energy) of the fully quantised 't Hooft-Polyakov monopole as an order parameter to distinguish the phases. We use Monte Carlo simulations to measure the monopole free energy and its first derivative with respect to the scalar mass. On small volumes we compare this to semi-classical predictions for the monopole. On large volumes we show that the free energy is screened to zero, signalling the formation of a confining monopole condensate. This screening does not allow the monopole mass to be interpreted as an order parameter, resolving the paradox.Comment: 12 pages, 7 figures, uses revtex. Minor changes made to the text to match with the published version at http://link.aps.org/abstract/PRD/v65/e12500

    Solutions of Gross-Pitaevskii equations beyond the hydrodynamic approximation: Application to the vortex problem

    Full text link
    We develop the multiscale technique to describe excitations of a Bose-Einstein condensate (BEC) whose characteristic scales are comparable with the healing length, thus going beyond the conventional hydrodynamical approximation. As an application of the theory we derive approximate explicit vortex and other solutions. The dynamical stability of the vortex is discussed on the basis of the mathematical framework developed here, the result being that its stability is granted at least up to times of the order of seconds, which is the condensate lifetime. Our analytical results are confirmed by the numerical simulations.Comment: To appear in Phys. Rev.

    Dynamics with Infinitely Many Derivatives: The Initial Value Problem

    Full text link
    Differential equations of infinite order are an increasingly important class of equations in theoretical physics. Such equations are ubiquitous in string field theory and have recently attracted considerable interest also from cosmologists. Though these equations have been studied in the classical mathematical literature, it appears that the physics community is largely unaware of the relevant formalism. Of particular importance is the fate of the initial value problem. Under what circumstances do infinite order differential equations possess a well-defined initial value problem and how many initial data are required? In this paper we study the initial value problem for infinite order differential equations in the mathematical framework of the formal operator calculus, with analytic initial data. This formalism allows us to handle simultaneously a wide array of different nonlocal equations within a single framework and also admits a transparent physical interpretation. We show that differential equations of infinite order do not generically admit infinitely many initial data. Rather, each pole of the propagator contributes two initial data to the final solution. Though it is possible to find differential equations of infinite order which admit well-defined initial value problem with only two initial data, neither the dynamical equations of p-adic string theory nor string field theory seem to belong to this class. However, both theories can be rendered ghost-free by suitable definition of the action of the formal pseudo-differential operator. This prescription restricts the theory to frequencies within some contour in the complex plane and hence may be thought of as a sort of ultra-violet cut-off.Comment: 40 pages, no figures. Added comments concerning fractional operators and the implications of restricting the contour of integration. Typos correcte

    Cosmic ray tests of the D0 preshower detector

    Full text link
    The D0 preshower detector consists of scintillator strips with embedded wavelength-shifting fibers, and a readout using Visible Light Photon Counters. The response to minimum ionizing particles has been tested with cosmic ray muons. We report results on the gain calibration and light-yield distributions. The spatial resolution is investigated taking into account the light sharing between strips, the effects of multiple scattering and various systematic uncertainties. The detection efficiency and noise contamination are also investigated.Comment: 27 pages, 24 figures, submitted to NIM

    From the Big Bang Theory to the Theory of a Stationary Universe

    Get PDF
    We consider chaotic inflation in the theories with the effective potentials phi^n and e^{\alpha\phi}. In such theories inflationary domains containing sufficiently large and homogeneous scalar field \phi permanently produce new inflationary domains of a similar type. We show that under certain conditions this process of the self-reproduction of the Universe can be described by a stationary distribution of probability, which means that the fraction of the physical volume of the Universe in a state with given properties (with given values of fields, with a given density of matter, etc.) does not depend on time, both at the stage of inflation and after it. This represents a strong deviation of inflationary cosmology from the standard Big Bang paradigm. We compare our approach with other approaches to quantum cosmology, and illustrate some of the general conclusions mentioned above with the results of a computer simulation of stochastic processes in the inflationary Universe.Comment: No changes to the file, but original figures are included. They substantially help to understand this paper, as well as eternal inflation in general, and what is now called the "multiverse" and the "string theory landscape." High quality figures can be found at http://www.stanford.edu/~alinde/LLMbigfigs

    Understanding the Emergent Structure of Competency Centers in Post-implementation Enterprise Systems

    Get PDF
    Part 3: Structures and NetworksInternational audiencePrior research provides conflicting insights about the link between investment in enterprise systems and firm value and in the ES governance mechanisms. The literature generally suggests that management should cultivate its technical and organizational expertise to derive value from currently deployed Enterprise Systems (ES) [8]. In the realm of practice, ERP vendors and configuration/integration partners strongly recommend the creation of an organizational structure to govern the ERP implementation and post-implementation process to improve project success and extract greater value from the ES investment. The ES literature, while unclear on the formation, and functioning of ES governance units, suggests the need for formal and fixed governance structures. This research utilizes Deleuze’s assemblage theory and emergence theory to explain the genesis and evolution of the governing ‘structure’ known as the Competency Center (CC). Our results illustrate the business needs driving the structuring processes behind the CC, are also those that lead to unintended and destabilizing outcomes. Whether the CC ‘assemblage’ survives to provide value depends on how the emergent issues are handled and how the assemblages are “positioned”. This research suggests effective ES governance is not derived from a prescribed step-wise process yielding formal structures, but rather form an organic process of assemblage

    Self-consistent model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps

    Get PDF
    We consider the problem of cold atomic collisions in tight traps, where the absolute scattering length may be larger than the trap size. As long as the size of the trap ground state is larger than a characteristic length of the van der Waals potential, the energy eigenvalues can be computed self-consistently from the scattering amplitude for untrapped atoms. By comparing with the exact numerical eigenvalues of the trapping plus interatomic potentials, we verify that our model gives accurate eigenvalues up to milliKelvin energies for single channel s-wave scattering of 23^{23}Na atoms in an isotropic harmonic trap, even when outside the Wigner threshold regime. Our model works also for multi-channel scattering, where the scattering length can be made large due to a magnetically tunable Feshbach resonance.Comment: 7 pages, 4 figures (PostScript), submitted to Physical Review
    • 

    corecore