
Inc*: An Incremental Approach for
Improving Local Search Heuristics

Mohamed Bader-El-Den and Riccardo Poli

Department of Computing and Electronic Systems,
University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom

{mbbade,rpoli}@essex.ac.uk

Abstract. This paper presents Inc*, a general algorithm that can be used in con-
junction with any local search heuristic and that has the potential to substantially
improve the overall performance of the heuristic. Genetic programming is used to
discover new strategies for the Inc* algorithm. We experimentally compare per-
formance of local heuristics for SAT with and without the Inc* algorithm. Results
show that Inc* consistently improves performance.

1 Introduction

Many NP-Complete problems, like scheduling, time tabling, satisfiability, graph colour-
ing, etc., are routinely solved through the use of heuristics. A heuristic is effectively a
rule of thumb or an educated guess that reduces the search required to find a solu-
tion. Heuristics make it possible to solve NP-Complete problems in practical situations
which are beyond complete/exhaustive solvers. However, they provide no guarantee of
success. So, finding ways to improve the performance of heuristics could have impor-
tant and far-reaching ramifications.

We present Inc*, a general algorithm that can be used in conjunction with any lo-
cal search heuristic to substantially improve the overall performance of the heuristic.
Genetic programming is used to discover new strategies for the Inc* algorithm. We
demonstrate the approach with Boolean satisfiability problems (SAT).

The paper is organised as follows. In Section 2 we introduce SAT problems and
describe some of the best-known local-search heuristics used to solve them. We also
review recent evolutionary systems developed for learning and evolving SAT heuristics.
In Section 3, we introduce the Inc* algorithm along with the GP system used to evolve
strategies for Inc*. A description of the experiments we performed with the GP Inc*
framework is given in Section 4, Finally, we draw some conclusions in Section 5.

2 SAT problem

SAT is a classical combinatorial optimisation problem. It was the first problem to be
proved to be NP-Complete [3]. Many heuristics have been proposed and successfully
used for solving the SAT problem (e.g., [8, 18, 20, 19]). SAT has many different practi-
cal applications. Also, many other problems can be transformed into SAT problems.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29579061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Mohamed Bader-El-Den and Riccardo Poli

The target in SAT is to determine whether it is possible to set the variables of a given
Boolean expression in such a way to make the expression true. The expression is said
to be satisfiable if such an assignment exists. If the expression is satisfiable, we often
want to know the assignment that satisfies it. The expression is typically represented in
Conjunctive Normal Form (CNF), i.e., as a conjunction of clauses, where each clause
is a disjunction of variables or negated variables.

There are many algorithms for solving SAT. Incomplete algorithms attempt to guess
an assignment that satisfies a formula. So, if they fail, one cannot know whether that’s
because the formula is unsatisfiable or simply because the algorithm did not run for long
enough. Complete algorithms, instead, effectively prove whether a formula is satisfiable
or not. So, their response is conclusive. They are in most cases based on backtracking.
That is, they select a variable, assign a value to it, simplify the formula based on this
value, then recursively check if the simplified formula is satisfiable. If this is the case,
the original formula is satisfiable and the problem is solved. Otherwise, the same recur-
sive check is done using the opposite truth value for the variable originally selected.

The best complete SAT solvers are instantiations of the Davis Putnam Logemann
Loveland procedure [4]. Incomplete algorithms are often based on local search heuris-
tics (Section 2.1). These algorithms can be extremely fast, but success cannot be guar-
anteed. On the contrary, complete algorithms guarantee success, but their computational
load can be considerable, and, so, they can be unacceptably slow on large SAT instances.

2.1 Stochastic local-search heuristics for SAT

Stochastic local-search heuristics have been widely used since the early 90s for solving
the SAT problem following the successes of GSAT [20]. The main idea behind these
heuristics is to try to get an educated guess as to which variable will most likely, when
flipped, give us a solution or will move us one step closer to a solution. Normally the
heuristic starts by randomly initialising all the variables in a CNF formula. It then flips
one variable at a time until either a solution is reached or the maximum number of flips
allowed has been exceeded. Algorithm 1 shows the general structure of a typical local-
search heuristic for the SAT problem. The algorithm is normally repeatedly restarted
for a certain number of times if it is not successful.

Some of the best-known heuristics of this type include:

GSAT [20] which, at each iteration, flips the variable with the highest gain score,
where the gain of a variable is the difference between the total number of satisfied
clauses after flipping the variable and the current number of satisfied clauses. The
gain is negative if flipping the variable reduces the total number of satisfied clauses.

HSAT [8] In GSAT more than one variable may present the maximum gain. GSAT
chooses among such variables randomly. HSAT, instead, it selects the variable with
the maximum age, where the age of a variable is the number of flips since it is was
last flipped. So, the most recently flipped variable has an age of zero.

WalkSat [19] starts by selecting one of the unsatisfied clauses C. Then it flips ran-
domly one of the variables that will not break any of the currently satisfied clauses
(leading to a “zero-damage” flip). If none of the variables in C has a “zero-damage”
characteristic, it selects with probability p the variable with the maximum score
gain, and with probability (1− p) a random variable in C.

Inc*: An Incremental Approach to Improving Local Search Heuristics 3

Algorithm 1 General algorithm for SAT stochastic local search heuristics
1: L = initialise the list of variables randomly
2: for i = 0 to MaxFlips do
3: if L satisfies formula F then
4: return L
5: end if
6: select variable V from L using some selection heuristic
7: flip V
8: end for
9: return no assignment satisfying F found

As one case see, SAT heuristics use one of two main strategies for choosing the next
variable to flip. The first strategy is to make a greedy move. In other words, the SAT
solver chooses to flip the variable which transforms the current solution state to a state
which is closest to a solution. The gain of the variable is typically the most important
factor is selecting such a move, although also the age of the variable is sometimes used
to avoid looping. The second strategy is to perform a random walk. Mainly this is done
to avoid (or escape from) local optima. This is done by selecting a random variable to
flip from a designated set variables. There are different ways of choosing this set. For
example, the set can include all the variables in the CNF formula, as in the GSAT, or
just the variables in unsatisfied clauses, as in WalkSat.

2.2 Incremental SAT

In a standard SAT algorithm the input is a problem instance and the target is to state
whether this instance could be satisfied or not, and what are the variable assignment
that satisfies it. In some cases it is also important to know if the instance could be still
satisfied if further (arbitrary) Boolean clauses were added to the current set. This is
known in the literature as incremental or dynamic SAT [16]. In incremental SAT the
solver normally starts with a certain number of clauses and determines whether this set
can be satisfied or not. In case it is satisfied, the solver gives the user the opportunity of
adding more clauses to the existing set. The solver then checks whether the solution is
still valid. If not, it attempts to repair it.

Most incremental SAT solvers are based on exact algorithms as in [10], although
some researchers have also used incomplete or heuristic-based solvers to deal with in-
cremental SAT problems [11]. The main problem with the latter is that heuristics give
no grantee that a solution can be found. Their main advantage is speed.

In this paper we will introduce an approach that presents some similarity with in-
cremental SAT, but where the objective is to solve SAT problems, not incremental SAT
problems. In particular, we will use Genetic Programming (GP) [13, 14] to investigate
the benefits of dynamically changing the number of active clauses during the course of
solving SAT problems. So, the solver is given a CNF formula including all the clauses
from the beginning, but we give the solver the ability to decide which clauses to start
with and in which order to tackle them. We will explain this in more detail later.

4 Mohamed Bader-El-Den and Riccardo Poli

2.3 Evolutionary algorithms and SAT problem

There have been a number of proposals of using evolutionary algorithms for SAT. An
example is FlipGA which was introduced by Marchiori and Rossi in [15], a genetic
algorithm was used to generate offspring solutions to SAT using standard genetic oper-
ators. However, offspring were then improved by means of local search methods. The
same authors later proposed ASAP, a variant of FlipGA [17]. A good overview of other
algorithms of this type is provided in [9].

GP has evolved competitive SAT solvers. For example, Fukunaga evolved local
search heuristics [6, 7]. Also, GP has been used to enhance the performance of exact
algorithms for SAT by helping the algorithm decide which variables to start the back-
tracking process with or to evolve heuristics for initialising dynamic decisions [12].
Furthermore, a general framework for evolving local-search 3-SAT heuristics, called
GP-HH, has recently been proposed [1, 2]. The aim there is to obtain “disposable”
heuristics which are evolved and used for a specific subset of instances of a problem.
Results were promising with GP-HH evolving very competitive heuristics.

3 The Inc* Framework

3.1 Principles Behind Inc*

As mentioned above, Inc* is a general algorithm that can be used in conjunction with
any local search heuristic to improve its performance. The general idea of the algorithm
is the following: rather than attempting to directly solve a difficult problem, let us first
derive a sequence of progressively simpler and simpler instances of the problem; then
let us give the solver these instances one by one starting from the simplest, and progress-
ing in the sequence only after all previous simplified instances are solved. The search
is not restarted when a new instance is presented to the solver. In this way, it is hoped
that the solver will effectively and progressively be biased towards areas of the search
space where there is a higher chance of finding a solution to the original problem.

While this is the fundamental idea, the Inc* framework goes one step further and
makes the choice of the simplified problems dynamic. The objective of this is to limit
the chances of the algorithm getting stuck in local optima. Whenever the system detects
that one of the simplified instances in the chain leading to the original problem is too
difficult, it backtracks and creates a new simplified instance (of the same size as the
previous one, but radically different from it) in the attempt to continue the progression
towards the goal problem instance.

The Inc* framework is particularly applicable to the SAT problem, where one can
easily and dynamically create the necessary set of simplified problems. Effectively the
algorithm starts by selecting a subset of the clauses in the formula. It then use one of
the SAT heuristics to tests the satisfiability of this portion of the formula, which we will
call the clauses active list. Depending on the result of the heuristic on this portion of the
formula, the algorithm then increases or decreases the number of clauses in the active
list. In some cases adding a clause has no effect on the satisfiability of the active list
with the current variable assignment, so no additional flips are necessary. In other cases,
more work is needed to find a new valid assignment.

Inc*: An Incremental Approach to Improving Local Search Heuristics 5

To illustrate the benefits of the main ideas behind Inc*, in Figure 1 we show the
results of two simple experiments using GSAT. In both experiments, we added clauses
to the active list one by one and we used GSAT after each addition to find an assignment
that satisfies the clauses currently active. The graph on the left of the figure shows the
case of a formula with 20 variables and 91 clauses. The graph reports the number of flips
GSAT used to find a new satisfying assignment after the addition of each new clause
and the number of variables in use in the active list. The plot on the right of the figure
shows the number of flips required by GSAT to find assignments that satisfy the active
list for a SAT instance with 50 variable and 218 clauses. The plots show that adding a
new clause to the currently active clauses requires no flips or a very small number of
flips most of the time. We even find that in both instances the full formula is actually
satisfied by an assignment found before all clauses had been added.1 This is really the
reason why the use of a progression of problems may make a problem easier. On rare
occasions, however, finding a new assignment after the addition of a clause may require
hundreds or even thousands of flips. It is precisely to avoid these high peaks that Inc*
backtracks.2

We have turned these ideas into a detailed algorithm (Algorithm 2). The algorithm
starts by initialising all the variables in the formula F randomly and by activating an
initial set of clauses by adding them to active clause list AC. The algorithm then runs one
of the SAT local search heuristics. The heuristic is given relatively a small number of
flips to run with at the beginning. The number of allowed flips is incremented gradually
if the SAT solver fails to satisfy the AC, until, of course, the total number of flips used
exceeds a predefined maximum (MaxFlips). A weight is assigned to each clause, which
indicates how many flips have been necessary to satisfy the active list after the addition
of this clause. So, after each run of the SAT heuristic, clause weights are updated. If the
heuristic found a variable assignment L that satisfies the current AC, then the size of AC
is increased by adding new classes to it. Otherwise, the algorithm removes from AC a
small set of clauses, giving preference to those with the lowest clause weight, and the
number of allowed flips is increased, as previously mentioned.

Two key elements in the effectiveness of Inc* are the decisions taken at Steps 21
and 24 in Algorithm 2 as to how many clauses to add or remove from the active list
after a success or failure, respectively. In this paper, we have used GP to find optimal
strategies to make these decisions. In the next section we describe the GP system used
and the evolved strategies.

1 This is not entirely surprising, since it is well-known that in most hard SAT instances there are
(sometimes numerous) redundant clauses. A redundant clause is a clause that has no effect on
the SAT formula [21]. There are algorithms for finding and removing redundant clauses [5],
but the process is complex and very time consuming, especially in large SAT instances.

2 Recently, some researchers have attempted to detect possible hidden structural information
inside real-world SAT instances (e.g., backbones, backdoors, equivalences and functional de-
pendencies) in an effort to improve the efficiency of SAT solvers on hard instances. Inc* does
not explicitly attempt to detect the hidden SAT structure. However, it effectively finds assign-
ments for the variables that minimise the chance of violating the backbone of a SAT problem as
early as possible in the construction of a solution. Furthermore, it does this quickly and without
ever requiring complex operations, simply acting as a wrapper for standard SAT heuristics.

6 Mohamed Bader-El-Den and Riccardo Poli

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90 100

Fl
ip

s/
N

um
be

r o
f V

ar
ia

bl
es

Number of Clauses

Number of Variables
Number of Flips

 1

 10

 100

 1000

 10000

 0 50 100 150 200 250

Fl
ip

s/
N

um
be

r o
f V

ar
ia

bl
es

Number of Clauses

Number of Variables
Number of Flips

Fig. 1. Behaviour of Inc* with GSAT on two SAT problems (see text) when adding clauses one
by one (and no backtracking).

3.2 Inc* Optimisation via GP

In this section we will describe the GP system used to evolve strategies for the Inc*
algorithm. As we mentioned above, an evolved strategy (which takes the form of a
computer program) needs to decide how many clauses the algorithm should add/remove
to/from the active list after each success or failure at finding a valid variable assignment
that satisfies the current active clauses of the full SAT formula.

We use a tree representation for programs. The function and terminal sets are shown
Table 1. We constrain the representation requiring that the root node of each individual
in the population be the binary function i f Success(d1,d2), where d1 and d2 assumed to
be reals. This function returns the integer part of its first argument, bd1c, if the last run
of the SAT heuristic was successful at satisfying the current AC. If this is the case the
value bd1c is taken to represent how many clauses should be added to AC.3 If, instead,
the SAT heuristic failed to satisfy AC, then i f Success returns the value bd2c, which is
taken to represent how many clauses should be removed from AC.

The other elements of the primitive set behave as follows: the function add(d1,d2)
returns the sum of d1 and d2, sub(d1,d2) subtracts d2 from d1, mul(d1,d2) returns the
product of d1 by d2, div(d1,d2) safely divides d1 by d2, and neg(d1) inverts the sign of
d1. The terminals vNo and cNo return the total number of variables and the total number
of clauses in the full SAT formula, respectively. The terminals used cNo and used vNo,
instead, return the number of unique variables and the number of clauses currently
loaded in the active list, respectively. Finally, constX represent random integers between
0 and 9.

To evolve general Inc* strategies, we used a training set including many SAT prob-
lems with different numbers of variables. The problems were taken from the widely
used SATLIB benchmark library. All problems were randomly generated satisfiable in-
stances of 3-SAT. In total we used 50 instances: 10 with 100 variables, 15 with 150

3 Note that, to give complete freedom to evolution, negative return values are allowed. If bd1c is
negative clauses are removed, rather than added, from AC.

Inc*: An Incremental Approach to Improving Local Search Heuristics 7

Algorithm 2 Inc* approach to solving SAT problems
1: L = random variable assignment
2: AC = small set of random clauses from the original problem
3: Flips = number of allowed flips at each stage
4: Flips Total = 0 {This keeps track of the overall number of flips used}
5: Flips Used = 0 {This keeps track of the flips used to test the active list}
6: Inc Flip Rate = rate of increment in the number of flips after each fail
7: repeat
8: for i = 0 to Flips do
9: if L satisfies formula F then

10: return L
11: end if
12: select variable V from AC using some selection heuristic
13: flip V in L
14: end for
15: Flips Total = Flips Total + Flips Used
16: update clause weights
17: if L satisfies AC then
18: if AC contains all clauses in F then
19: return L
20: end if
21: AC = add more clauses to the active list
22: else
23: sort AC
24: AC = remove some clauses from the active list
25: Flips = increment allowed flips
26: end if
27: until Flips Total < MaxFlips
28: return no assignment satisfying F found

variables and 25 with 250 variables. The fitness f (s) of an evolved strategy s was mea-
sured by running the Inc* algorithm under the control of s on all the 50 fitness cases.
More precisely

f (s) = ∑
i

(

incs(i)∗
v(i)
10

)

+
1

f lips(s)

where v(i) is the number of variables in fitness case i, incs(i) is a flag representing
whether or not running the Inc* algorithm with strategy s on fitness case i led to success
(i.e., incs(i) = 1 if fitness case i is satisfied and 0 otherwise), and f lips(s) is the number
of flips used by strategy s averaged over all fitness cases. The factor v(i)/10 is used to
emphasise the importance of fitness cases with a larger number of variables, while the
term 1/ f lips(s) is added to give a slight advantage to strategies which use fewer flips
(this is very small and typically plays a role only to break symmetries in the presence of
individuals that solve the same fitness cases, but with different degrees of efficiency).

There is only one exception to this fitness calculation. In the system we keep a count
of the number of attempts the SAT solver made at solving the AC list. If a maximum
number of tries is reached, fitness is computed differently. Imagine, for example, what

8 Mohamed Bader-El-Den and Riccardo Poli

Table 1. GP function and terminal sets.

Function Set
i f Success(d1,d2) : returns d1 if the last attempt to solve the CNF formula was successful
add(d1,d2) : returns the sum of d1 and d2 as doubles
sub(d1,d2) : subtracts d2 from d1
mul(d1,d2) : returns the multiplication of d1 by d2
div(d1,d2) : safe division of d1 by d2
abs(d1) : returns the absolute value of d1
neg(d1) : multiplies d1 by −1
sqrt(d1) : returns the a safe square root of d1
Terminal Set
vNo : total number of variables in the CNF SAT formula
cNo : total number of clauses in the CNF SAT formula
used cNo : number the currently active variables
used vNo : number the currently active clauses
constX : constant integer number form 0 to 9

would happen if an evolved strategy added zero clauses after each successful attempt
and removed zero clauses after each unsuccessful one. After a small number of flips
have been expended to satisfy the initial active clauses, since no clauses are added or
removed, no further flips would ever be necessary. So, the total number of flips used
would never reach the maximum number of flips allowed, leading to an infinite loop.
By using a maximum number of tries, we can avoid this and we can signal to the system
that this individual (strategy) went into an infinite loop on the current fitness case. The
system reacts by setting the fitness of this strategy to zero and stopping the evaluation
of any remaining fitness cases.

The GP system initialises the population by randomly drawing nodes from the func-
tion and terminal sets. This is done uniformly at random using the GROW method, ex-
cept that the selection of the function i f Success is forced for the root node and is not
allowed elsewhere. After initialisation, the population is manipulated by the following
operators:

– Roulette wheel selection (proportionate selection) is used. Reselection is permitted.
– The reproduction rate is 0.1. Individuals that have not been affected by any genetic

operator are not evaluated again to reduce the computation cost.
– The crossover rate is 0.8. Offspring are created by extracting a random subtree from

the first parent and inserting it at a random point (excluding the root of the tree) in
a copy of the second parent.

– Mutation is applied with a rate of 0.1. This is done by selecting a random node
from the parent (including the root of the tree), deleting the sub-tree rooted there,
and then regenerating it randomly as in the initialisation phase.

4 Experimental Results

In our experiments we used a population of 1000 individuals, run for 51 generations.
While strategies are evolved using 50 fitness cases, the generality of best of run indi-

Inc*: An Incremental Approach to Improving Local Search Heuristics 9

viduals is then evaluated on an independent test set including more 500 SAT instances.
This section will show a comparison between the performance of standard handcrafted
heuristics (GSAT and WalkSat) and the same heuristics when combined with Inc* con-
trolled by strategies evolved by GP. We have used the following parameters values for
the Inc* algorithm.4 We allow 100 flips to start with. Upon failure, the number of flips
is incremented by 20%. We allow a maximum total number of flips of 100,000. The
maximum number of tries is 1000 (including successful and unsuccessful attempts).

The GP system has managed to evolve a number of successful strategies. Most of
these can be categorised into three groups. In the first group, strategies start by activat-
ing a relatively small number of clauses w.r.t. the total, after which they then rapidly in-
crease the number of active clauses. This was almost always the best performing group.
In the second group, strategies start by activating a very large number clauses at the be-
ginning, then they remove some clauses after each fail and try to go forward again until a
solution for all clauses is found. Strategies in this category perform slightly worse than
those in the first category. Strategies in the third group were generally outperformed
by those in the other groups. Strategies in this group acted in an unexpected manner.
Namely, these strategies kept moving forward by adding clauses after both successful
and unsuccessful tries. In the testing phase this kind of strategies performed well on
instances with fewer than 100 variables in terms of number of flips used to solve the in-
stance. However, they had a lower success rate than other strategies on larger instances.
The reason of this will be explained after showing detailed results of the strategies. The
following is some evolved heuristics after they have been normalizef representing the
diffrent groups:

– First group: i f Success(abs(vno),neg(sroot(used vNo)))
– First group: i f Success(mul(used vno,div(used cno,2)),neg(div(used vno,9)))
– Second group: i f Success(cno,neg(sub(cno,div(used cno,3))))
– Third group: i f Success(mul(vno,2),abs(add(vno,sroot(used cno))))

Table 2 shows a first set of experimental results. In particular, it shows the differ-
ence between the average performance of the GSAT and the average performance of
GSAT combined with the best evolved Inc* strategies, which we will call IncGSAT.
Both heuristics in this experiment are allowed a maximum of 100,000 total flips. The
performance of the heuristics on an instance is the average of 10 different runs, to ensure
the results are statistically meaningful. The AF column shows the average number of
flips used by each heuristic in successful attempts only. As one case see IncGSAT has a
better performance than GSAT in terms of success rate (as also shown in Figure 2) and
average number of flips used to solve the test instances. So, IncGSAT managed to solve
many more instance in less time. We believe this is due to the lack of random moves
in the GSAT, which makes GSAT easy pray of local optima. IncGSAT improves GSAT
by going forward and backward adding and removing clauses through the course of a
run thereby avoiding the problem. The AT column shows the number of tries IncGSAT
used. This corresponds to the number of times IncGSAT modified the search space to
escape local optima and find a better path for satisfying the instance.

4 Many different combinations of parameter values have been tested, but this particular combi-
nation gave almost invariably the best results.

10 Mohamed Bader-El-Den and Riccardo Poli

Table 2. Comparison between average performance of GSAT and GSAT with Inc* SR=success
rate, AT = average tries, AF=average number of flips (out of a maximum of 100,000).

GSAT GSAT+Inc*
Instance Test Set variables clauses SR AF SR AF AT
uf20-(901-1000) 20 91 0.632 43853 1 1336.52 3.37
uf50-(901-1000) 50 218 0.368 75623 0.935 14949.3 12.29
uf75-(51-100) 75 325 0.348 78423.1 0.780 31614.6 18.47
uf100-(901-1000) 100 430 0.297 86599 0.723 39856 22.59

Table 3. Comparison between average performance of WalkSat and WalkSat with Inc*
SR=success rate, AT = average tries, AF=average number of flips (out of a maximum of 100,000).

WalkSat WalkSat+Inc*
Instance Test Set variables clauses SR AF SR AF AT
uf20-(901-1000) 20 91 1 104.43 1 116.239 1.18
uf50-(901-1000) 50 218 1 673.17 1 696.174 4.95
uf75-(51-100) 75 325 1 1896.74 1 2000.59 8.07
uf100-(901-1000) 100 430 1 3747.32 1 3825.82 11.51
uf150-(51-100) 150 645 0.974 15021.3 0.987 14275 16.45
uf200-(51-100) 200 860 0.9 26639.2 0.936 28526.2 21.39
uf225-(51-100) 225 960 0.87 29868.5 0.91 31258.8 22.17
uf250-(51-100) 250 1065 0.816 38972.4 0.875 38304.2 24.09

Table 3 shows the results of another set of experiment using WalkSat and a com-
bination of Sat* and WalkSat which we will call IncWalkSat. Also in this experiment,
both heuristics were given a maximum of 100,000 total flips. Again, the performance
of the heuristics on an instance is the average of 10 different runs. WalkSat is among
the best performing local search heuristics for SAT.

We categorize the results in this table to two groups. The first group includes in-
stances with no more than 100 variables. The second group includes instances with
more than 100 variables. In the first group of problems both heuristics have a perfect
success rate of 100%. However, WalkSat used a slightly smaller number of flips, thereby
running marginally faster than IncWalkSat on this group of problems. In the second
group, which contains larger instances, however, IncWalkSat has a higher success rate
than WalkSat, and the difference in the performance increases as the size of the in-
stance increases. This means that Inc* can solve complex instances where local heuris-
tics alone fail. This explains why when training the GP system on small instances some
evolved strategies (the strategies in group three) always tried to go foreword by adding
more clauses after both successful and unsuccessful tries as we mentioned above. Ef-
fectively, these strategies tried to imitate the standard heuristics behaviour, and, indeed,
they were slightly faster on small instances.

5 Conclusion

In this paper we provided a proof of concept, supported by results, of the ideas be-
hind our Inc* algorithm, which tries to solve problems incrementally. Results on the

Inc*: An Incremental Approach to Improving Local Search Heuristics 11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

S
uc

ce
ss

 R
at

e

Number of Variables

WalkSat
Inc+WalkSat

GSAT
Inc+GSAT

Fig. 2. Comparison between GSAT, WalkSAT, IncGSAT and IncWalk average success rate per-
formance

SAT problem showed that combining local search heuristics with Inc* improved their
performance especially on instance which standard local search alone failed to solve.

In future work, we will try to generalise the algorithm to other problem domains,
including scheduling, time tabling, TSP, etc. Also we will test the algorithm on diffident
types of SAT benchmarks (e.g., structured and handcrafted SAT problems). Also we
would like to embed Inc* within a hyperheuristic framework where multiple agents
perform the search in parallel. Each agent might, for example, use a different heuristic
and would search for solutions to a part of the original problem (e.g., a subset of the
clauses in a SAT formula).

Acknowledgements

The authors acknowledge financial support from EPSRC (grants EP/C523377/1 and
EP/C523385/1).

References

1. M. B. Bader-El-Den and R. Poli. A GP-based hyper-heuristic framework for evolving 3-SAT
heuristics. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and evolu-
tionary computation, volume 2, pages 1749–1749, London, 7-11 July 2007. ACM Press.

2. M. B. Bader-El-Din and R. Poli. Generating SAT local-search heuristics using a GP hyper-
heuristic framework. Proceedings of the 8th International Conference on Artificial Evolution,
36(1):141–152, 2007.

12 Mohamed Bader-El-Den and Riccardo Poli

3. S. A. Cook. The complexity of theorem-proving procedures. In STOC ’71: Proceedings of
the third annual ACM symposium on Theory of computing, pages 151–158, New York, NY,
USA, 1971. ACM Press.

4. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving. Com-
mun. ACM, 5(7):394–397, 1962.

5. O. Fourdrinoy, E. Gregoire, B. Mazure, and L. Sais. Eliminating redundant clauses in sat
instances. In The Third International Conference on Integration of AI and OR Techniques
4th International Conference on Integration of AI and OR Techniques in Cons(CPAIOR’07),
pages 71–83, Brussels, juin 2007.

6. A. Fukunaga. Automated discovery of composite SAT variable selection heuristics. In Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI), pages 641–648, 2002.

7. A. S. Fukunaga. Evolving local search heuristics for SAT using genetic programming. In
Genetic and Evolutionary Computation – GECCO-2004, volume 3103 of Lecture Notes in
Computer Science, pages 483–494, Seattle, WA, USA, 26-30 June 2004. Springer-Verlag.

8. I. P. Gent and T. Walsh. Towards an understanding of hill-climbing procedures for SAT. In
Proc. of AAAI-93, pages 28–33, Washington, DC, 1993.

9. J. Gottlieb, E. Marchiori, and C. Rossi. Evolutionary algorithms for the satisfiability prob-
lem. Evol. Comput., 10(1):35–50, 2002.

10. H. Han and F. Somenzi. Alembic: an efficient algorithm for cnf preprocessing. In DAC
’07: Proceedings of the 44th annual conference on Design automation, pages 582–587, New
York, NY, USA, 2007. ACM.

11. H. H. Hoos and K. O’Neill. Stochastic local search methods for dynamic SAT- an initial
investigation. Technical Report TR-00-01, 1, 2000.

12. R. H. Kibria and Y. Li. Optimizing the initialization of dynamic decision heuristics in DPLL
SAT solvers using genetic programming. In P. Collet et al., editors, Proceedings of the 9th
European Conference on Genetic Programming, volume 3905 of Lecture Notes in Computer
Science, pages 331–340, Budapest, Hungary, 10 - 12 Apr. 2006. Springer.

13. J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

14. W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer-Verlag, 2002.
15. E. Marchiori and C. Rossi. A flipping genetic algorithm for hard 3-SAT problems. In

W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith,
editors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 1,
pages 393–400, Orlando, Florida, USA, 13-17 1999. Morgan Kaufmann.

16. S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Minimizing conflicts: A heuristic
repair method for constraint satisfaction and scheduling problems. Artificial Intelligence,
58(1-3):161–205, 1992.

17. C. Rossi, E. Marchiori, and J. N. Kok. An adaptive evolutionary algorithm for the satisfia-
bility problem. In SAC (1), pages 463–469, 2000.

18. B. Selman and H. Kautz. Domain-independent extensions to GSAT: solving large structured
satisfiability problems. In Proceedings of theInternational Joint Conference on Artificial
Intelligence(IJCAI-93), Chambry, France, 1993.

19. B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for improving local search. In
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI’94), pages
337–343, Seattle, 1994.

20. B. Selman, H. J. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In P. Rosenbloom and P. Szolovits, editors, Proceedings of the Tenth National
Conference on Artificial Intelligence, pages 440–446, Menlo Park, CA, 1992. AAAI Press.

21. H. Zeng and S. A. McIlraith. The role of redundant clauses in solving satisfiability problems.
In Principles and Practice of Constraint Programming - CP 2005, page 873, 2005.

