103 research outputs found

    Biogeophysical climate impacts of forest management in Switzerland

    Get PDF
    Forests influence climate through biogeochemical and biogeophysical processes. Biogeochemical processes include greenhouse gas (GHG) exchange as well as emissions of other chemical compounds such as biogenic volatile organic compounds, which can act as aerosol precursors. The biogeophysical effect, on the other hand, refer to the alteration of land properties such as albedo, evapotranspiration and surface roughness. The climate impacts of land use activities such as forestry are routinely monitored in terms of GHG emissions under the United Nations Framework Convention on Climate Change. The associated biogeophysical impacts, however, are not accounted for as part of this framework despite the growing awareness that these effects matter regionally and should therefore be considered in the decision-making process. In this report, we synthetizes the current state of knowledge concerning the biogeophysical effect of forestry activities with a special focus on Switzerland. Beside reviewing the existing literature we also present new results for Switzerland based on observation-driven estimates as well as process-based modelling

    Climate engineering of vegetated land for hot extremes mitigation: An Earth system model sensitivity study

    Get PDF
    Various climate engineering schemes have been proposed as a way to curb anthropogenic climate change. Land climate engineering schemes aiming to reduce the amount of solar radiation absorbed at the surface by changes in land surface albedo have been considered in a limited number of investigations. However, global studies on this topic have generally focused on the impacts on mean climate rather than extremes. Here we present the results of a series of transient global climate engineering sensitivity experiments performed with the Community Earth System Model over the time period 1950–2100 under historical and Representative Concentration Pathway 8.5 scenarios. Four sets of experiments are performed in which the surface albedo over snow-free vegetated grid points is increased respectively by 0.05, 0.10, 0.15, and 0.20. The simulations show a preferential cooling of hot extremes relative to mean temperatures throughout the Northern midlatitudes during boreal summer under the late twentieth century conditions. Two main mechanisms drive this response: On the one hand, a stronger efficacy of the albedo-induced radiative forcing on days with high incoming shortwave radiation and, on the other hand, enhanced soil moisture-induced evaporative cooling during the warmest days relative to the control simulation due to accumulated soil moisture storage and reduced drying. The latter effect is dominant in summer in midlatitude regions and also implies a reduction of summer drought conditions. It thus constitutes another important benefit of surface albedo modifications in reducing climate change impacts. The simulated response for the end of the 21st century conditions is of the same sign as that for the end of the twentieth century conditions but indicates an increasing absolute impact of land surface albedo increases in reducing mean and extreme temperatures under enhanced greenhouse gas forcing

    Historical Land-Cover Change Impacts on Climate: Comparative Assessment of LUCID and CMIP5 Multimodel Experiments

    Get PDF
    During the industrial period, many regions experienced a reduction in forest cover and an expansion of agricultural areas, in particular North America, northern Eurasia, and South Asia. Here, results from the Land-Use and Climate, Identification of Robust Impacts (LUCID) and CMIP5 model intercomparison projects are compared in order to investigate how land-cover changes (LCC) in these regions have locally impacted the biophysical land surface properties, like albedo and evapotranspiration, and how this has affected seasonal mean temperature as well as its diurnal cycle. The impact of LCC is extracted from climate simulations, including all historical forcings, using a method that is shown to capture well the sign and the seasonal cycle of the impacts diagnosed from single-forcing experiments in most cases. The model comparison reveals that both the LUCID and CMIP5 models agree on the albedo-induced reduction of mean winter temperatures over midlatitudes. In contrast, there is less agreement concerning the response of the latent heat flux and, subsequently, mean temperature during summer, when evaporative cooling plays a more important role. Overall, a majority of models exhibit a local warming effect of LCC during this season, contrasting with results from the LUCID studies. A striking result is that none of the analyzed models reproduce well the changes in the diurnal cycle identified in present-day observations of the effect of deforestation. However, overall the CMIP5 models better simulate the observed summer daytime warming effect compared to the LUCID models, as well as the winter nighttime cooling effect

    Impact of soil map specifications for European climate simulations

    Get PDF
    Soil physical characteristics can influence terrestrial hydrology and the energy balance and may thus affect land-atmosphere exchanges. However, only few studies have investigated the importance of soil textures for climate. In this study, we examine the impact of soil texture specification in a regional climate model. We perform climate simulations over Europe using soil maps derived from two different sources: the soil map of the world from the Food and Agricultural Organization and the European Soil Database from the European Commission Joint Research Center. These simulations highlight the importance of the specified soil texture in summer, with differences of up to 2°C in mean 2-m temperature and 20% in precipitation resulting from changes in the partitioning of energy at the land surface into sensible and latent heat flux. Furthermore, we perform additional simulations where individual soil parameters are perturbed in order to understand their role for summer climate. These simulations highlight the importance of the vertical profile of soil moisture for evapotranspiration. Parameters affecting the latter are hydraulic diffusivity parameters, field capacity and plant wilting point. Our study highlights the importance of soil properties for climate simulations. Given the uncertainty associated with the geographical distribution of soil texture and the resulting differences between maps from different sources, efforts to improve existing databases are needed. In addition, climate models would benefit from tackling unresolved issues in land-surface modeling related to the high spatial variability in soil parameters, both horizontally and vertically, and to limitations of the concept of soil textural clas

    COSMO-CLM2: a new version of the COSMO-CLM model coupled to the Community Land Model

    Get PDF
    This study presents an evaluation of a new biosphere-atmosphere Regional Climate Model. COSMO-CLM2 results from the coupling between the non-hydrostatic atmospheric model COSMO-CLM version 4.0 and the Community Land Model version 3.5 (CLM3.5). In this coupling, CLM3.5 replaces a simpler land surface parameterization (TERRA_ML) used in the standard COSMO-CLM. Compared to TERRA_ML, CLM3.5 comprises a more complete representation of land surface processes including hydrology, biogeophysics, biogeochemistry and vegetation dynamics. Historical climate simulations over Europe with COSMO-CLM and with the new COSMO-CLM2 are evaluated against various data products. The simulated climate is found to be substantially affected by the coupling with CLM3.5, particularly in summer. Radiation fluxes as well as turbulent fluxes at the surface are found to be more realistically represented in COSMO-CLM2. This subsequently leads to improvements of several aspects of the simulated climate (cloud cover, surface temperature and precipitation). We show that a better partitioning of turbulent fluxes is the central factor allowing for the better performances of COSMO-CLM2 over COSMO-CLM. Despite these improvements, some model deficiencies still remain, most notably a substantial underestimation of surface net shortwave radiation. Overall, these results highlight the importance of land surface processes in shaping the European climate and the benefit of using an advanced land surface model for regional climate simulation

    Constraining future terrestrial carbon cycle projections using observation‐based water and carbon flux estimates

    Get PDF
    The terrestrial biosphere is currently acting as a sink for about a third of the total anthropogenic CO2 emissions. However, the future fate of this sink in the coming decades is very uncertain, as current earth system models (ESMs) simulate diverging responses of the terrestrial carbon cycle to upcoming climate change. Here, we use observation-based constraints of water and carbon fluxes to reduce uncertainties in the projected terrestrial carbon cycle response derived from simulations of ESMs conducted as part of the 5th phase of the Coupled Model Intercomparison Project (CMIP5). We find in the ESMs a clear linear relationship between present-day evapotranspiration (ET) and gross primary productivity (GPP), as well as between these present-day fluxes and projected changes in GPP, thus providing an emergent constraint on projected GPP. Constraining the ESMs based on their ability to simulate present-day ET and GPP leads to a substantial decrease in the projected GPP and to a ca. 50% reduction in the associated model spread in GPP by the end of the century. Given the strong correlation between projected changes in GPP and in NBP in the ESMs, applying the constraints on net biome productivity (NBP) reduces the model spread in the projected land sink by more than 30% by 2100. Moreover, the projected decline in the land sink is at least doubled in the constrained ensembles and the probability that the terrestrial biosphere is turned into a net carbon source by the end of the century is strongly increased. This indicates that the decline in the future land carbon uptake might be stronger than previously thought, which would have important implications for the rate of increase in the atmospheric CO2 concentration and for future climate change

    Influence of Amazonian deforestation on the future evolution of regional surface fluxes, circulation, surface temperature and precipitation

    Get PDF
    The extent of the Amazon rainforest is projected to drastically decrease in future decades because of land-use changes. Previous climate modelling studies have found that the biogeophysical effects of future Amazonian deforestation will likely increase surface temperatures and reduce precipitation locally. However, the magnitude of these changes and the potential existence of tipping points in the underlying relationships is still highly uncertain. Using a regional climate model at a resolution of about 50 km over the South American continent, we perform four ERA-interim-driven simulations with prescribed land cover maps corresponding to present-day vegetation, two deforestation scenarios for the twenty-first century, and a totally-deforested Amazon case. In response to projected land cover changes for 2100, we find an annual mean surface temperature increase of 0.5∘C over the Amazonian region and an annual mean decrease in rainfall of 0.17 mm/day compared to present-day conditions. These estimates reach 0.8∘C and 0.22 mm/day in the total-deforestation case. We also compare our results to those from 28 previous (regional and global) climate modelling experiments. We show that the historical development of climate models did not modify the median estimate of the Amazonian climate sensitivity to deforestation, but led to a reduction of its uncertainty. Our results suggest that the biogeophysical effects of deforestation alone are unlikely to lead to a tipping point in the evolution of the regional climate under present-day climate conditions. However, the conducted synthesis of the literature reveals that this behaviour may be model-dependent, and the greenhouse gas-induced climate forcing and biogeochemical feedbacks should also be taken into account to fully assess the future climate of this region

    Impact of soil map specifications for European climate simulations

    Get PDF
    Soil physical characteristics can influence terrestrial hydrology and the energy balance and may thus affect land–atmosphere exchanges. However, only few studies have investigated the importance of soil textures for climate. In this study, we examine the impact of soil texture specification in a regional climate model. We perform climate simulations over Europe using soil maps derived from two different sources: the soil map of the world from the Food and Agricultural Organization and the European Soil Database from the European Commission Joint Research Center. These simulations highlight the importance of the specified soil texture in summer, with differences of up to 2 °C in mean 2-m temperature and 20 % in precipitation resulting from changes in the partitioning of energy at the land surface into sensible and latent heat flux. Furthermore, we perform additional simulations where individual soil parameters are perturbed in order to understand their role for summer climate. These simulations highlight the importance of the vertical profile of soil moisture for evapotranspiration. Parameters affecting the latter are hydraulic diffusivity parameters, field capacity and plant wilting point. Our study highlights the importance of soil properties for climate simulations. Given the uncertainty associated with the geographical distribution of soil texture and the resulting differences between maps from different sources, efforts to improve existing databases are needed. In addition, climate models would benefit from tackling unresolved issues in land-surface modeling related to the high spatial variability in soil parameters, both horizontally and vertically, and to limitations of the concept of soil textural class

    The role of urban trees in reducing land surface temperatures in European cities

    Get PDF
    Urban trees influence temperatures in cities. However, their effectiveness at mitigating urban heat in different climatic contexts and in comparison to treeless urban green spaces has not yet been sufficiently explored. Here, we use high-resolution satellite land surface temperatures (LSTs) and land-cover data from 293 European cities to infer the potential of urban trees to reduce LSTs. We show that urban trees exhibit lower temperatures than urban fabric across most European cities in summer and during hot extremes. Compared to continuous urban fabric, LSTs observed for urban trees are on average 0-4 K lower in Southern European regions and 8-12 K lower in Central Europe. Treeless urban green spaces are overall less effective in reducing LSTs, and their cooling effect is approximately 2-4 times lower than the cooling induced by urban trees. By revealing continental-scale patterns in the effect of trees and treeless green spaces on urban LST our results highlight the importance of considering and further investigating the climate-dependent effectiveness of heat mitigation measures in cities
    corecore