934 research outputs found

    Stochastic Theory of Accelerated Detectors in a Quantum Field

    Full text link
    We analyze the statistical mechanical properties of n-detectors in arbitrary states of motion interacting with each other via a quantum field. We use the open system concept and the influence functional method to calculate the influence of quantum fields on detectors in motion, and the mutual influence of detectors via fields. We discuss the difference between self and mutual impedance and advanced and retarded noise. The mutual effects of detectors on each other can be studied from the Langevin equations derived from the influence functional, as it contains the backreaction of the field on the system self-consistently. We show the existence of general fluctuation- dissipation relations, and for trajectories without event horizons, correlation-propagation relations, which succinctly encapsulate these quantum statistical phenomena. These findings serve to clarify some existing confusions in the accelerated detector problem. The general methodology presented here could also serve as a platform to explore the quantum statistical properties of particles and fields, with practical applications in atomic and optical physics problems.Comment: 32 pages, Late

    Free Boson Realization of Uq(slN^)U_q(\widehat{sl_N})

    Full text link
    We construct a realization of the quantum affine algebra Uq(slN^)U_q(\widehat{sl_N}) of an arbitrary level kk in terms of free boson fields. In the q ⁣ ⁣1q\!\rightarrow\! 1 limit this realization becomes the Wakimoto realization of slN^\widehat{sl_N}. The screening currents and the vertex operators(primary fields) are also constructed; the former commutes with Uq(slN^)U_q(\widehat{sl_N}) modulo total difference, and the latter creates the Uq(slN^)U_q(\widehat{sl_N}) highest weight state from the vacuum state of the boson Fock space.Comment: 24 pages, LaTeX, RIMS-924, YITP/K-101

    Decoherence Strength of Multiple Non-Markovian Environments

    Get PDF
    It is known that one can characterize the decoherence strength of a Markovian environment by the product of its temperature and induced damping, and order the decoherence strength of multiple environments by this quantity. We show that for non-Markovian environments in the weak coupling regime there also exists a natural (albeit partial) ordering of environment-induced irreversibility within a perturbative treatment. This measure can be applied to both low-temperature and non-equilibrium environments.Comment: 6 pages, 1 figure, v3 included figure, appendix, and clarification of result

    Quantum Vacuum Instability Near Rotating Stars

    Get PDF
    We discuss the Starobinskii-Unruh process for the Kerr black hole. We show how this effect is related to the theory of squeezed states. We then consider a simple model for a highly relativistic rotating star and show that the Starobinskii-Unruh effect is absent.Comment: 17 Pages, (accepted by PRD), (previously incorrect header files have been corrected

    A self-consistent model of Galactic stellar and dust infrared emission and the abundance of polycyclic aromatic hydrocarbons

    Full text link
    We present a self-consistent three-dimensional Monte-Carlo radiative transfer model of the stellar and dust emission in the Milky-Way, and have computed synthetic observations of the 3.6 to 100 microns emission in the Galactic mid-plane. In order to compare the model to observations, we use the GLIMPSE, MIPSGAL, and IRAS surveys to construct total emission spectra, as well as longitude and latitude profiles for the emission. The distribution of stars and dust is taken from the SKY model, and the dust emissivities includes an approximation of the emission from polycyclic aromatic hydrocarbons in addition to thermal emission. The model emission is in broad agreement with the observations, but a few modifications are needed to obtain a good fit. Firstly, by adjusting the model to include two major and two minor spiral arms rather than four equal spiral arms, the fit to the longitude profiles for |l|>30 degrees can be improved. Secondly, introducing a deficit in the dust distribution in the inner Galaxy results in a better fit to the shape of the IRAS longitude profiles at 60 and 100 microns. With these modifications, the model fits the observed profiles well, although it systematically under-estimates the 5.8 and 8.0 microns fluxes. One way to resolve this discrepancy is to increase the abundance of PAH molecules by 50% compared to the original model, although we note that changes to the dust distribution or radiation field may provide alternative solutions. Finally, we use the model to quantify which stellar populations contribute the most to the heating of different dust types, and which stellar populations and dust types contribute the most to the emission at different wavelengths.Comment: Published in A&A. This version has been revised (compared to the published version) to include additional references to previous work. Scripts to reproduce the results in this paper can be found as supplementary material on the A&A site, or at https://github.com/hyperion-rt/paper-galaxy-rt-mode

    Information measures and classicality in quantum mechanics

    Full text link
    We study information measures in quantu mechanics, with particular emphasis on providing a quantification of the notions of classicality and predictability. Our primary tool is the Shannon - Wehrl entropy I. We give a precise criterion for phase space classicality and argue that in view of this a) I provides a measure of the degree of deviation from classicality for closed system b) I - S (S the von Neumann entropy) plays the same role in open systems We examine particular examples in non-relativistic quantum mechanics. Finally, (this being one of our main motivations) we comment on field classicalisation on early universe cosmology.Comment: 35 pages, LATE

    Coulomb gap in a model with finite charge transfer energy

    Full text link
    The Coulomb gap in a donor-acceptor model with finite charge transfer energy Δ\Delta describing the electronic system on the dielectric side of the metal-insulator transition is investigated by means of computer simulations on two- and three-dimensional finite samples with a random distribution of equal amounts of donor and acceptor sites. Rigorous relations reflecting the symmetry of the model presented with respect to the exchange of donors and acceptors are derived. In the immediate neighborhood of the Fermi energy μ\mu the the density of one-electron excitations g(ϵ)g(\epsilon) is determined solely by finite size effects and g(ϵ)g(\epsilon) further away from μ\mu is described by an asymmetric power law with a non-universal exponent, depending on the parameter Δ\Delta.Comment: 10 pages, 6 figures, submitted to Phys. Rev.

    Mutations of the BRAF gene in human cancer

    Get PDF
    Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma

    Interaction of Low - Energy Induced Gravity with Quantized Matter and Phase Transition Induced by Curvature

    Full text link
    At high energy scale the only quantum effect of any asymptotic free and asymptotically conformal invariant GUT is the trace anomaly of the energy-momentum tensor. Anomaly generates the new degree of freedom, that is propagating conformal factor. At lower energies conformal factor starts to interact with scalar field because of the violation of conformal invariance. We estimate the effect of such an interaction and find the running of the nonminimal coupling from conformal value 16\frac{1}{6} to 00. Then we discuss the possibility of the first order phase transition induced by curvature in a region close to the stable fixed point and calculate the induced values of Newtonian and cosmological constants.Comment: 11 pages, LaTex, KEK-TH-397-KEK Preprint 94-3
    corecore